History Repeats Itself: COVID-19 Forecasting

Prof. Xifeng Yan Collaborators: Xiaoyong Jin, Prof. Yu-Xiang Wang Computer Science, UCSB

NSF Rapid: Interventional COVID-19 Response Forecasting

Daily New Confirmed Cases

Daily new confirmed COVID-19 cases per million people

Shown is the rolling 7-day average. The number of confirmed cases is lower than the number of actual cases; the main reason for that is limited testing.

credit: https://ourworldindata.org/coronavirus

Our World in Data

Daily New Deaths

Daily new confirmed COVID-19 deaths per million people

Shown is the rolling 7-day average. Limited testing and challenges in the attribution of the cause of death means that the number of confirmed deaths may not be an accurate count of the true number of deaths from COVID-19.

credit: https://ourworldindata.org/coronavirus

Our Work in Data

NSF Rapid: Interventional COVID-19 Response Forecasting

We started the project in March, 2020

Many Factors: Some are Very Dynamic

Time Series Forecasting: Extensively Studied

Classic Epidemic Models: SIR, SEIR etc.

Modeling Spread of Disease

Susceptible
$$\xrightarrow{\beta SI}$$
 Infectious $\xrightarrow{\gamma I}$ Recovered
 $\frac{dS}{dt} = -\frac{\beta IS}{N},$
 $\frac{dI}{dt} = \frac{\beta IS}{N} - \gamma I,$
 $\frac{dR}{dt} = \gamma I$

Try Something Different: History Repeats Itself

- Different regions share
 COVID-19 trending pattern
 - The spreading rate is determined by common factors, such as social interactions and protections
- To forecast cases in a certain region, we can refer to other regions where pandemic starts earlier

Similar historical pattern \rightarrow Similar future growth

- In July, Santa Barbara county was experiencing a new wave of COVID-19 spreading that resembles that in other regions
 - e.g. Mexico in early June

Find Similar Regions (Reference)

For example, sharing similar factors : demographic, population density, business structure, social culture, psychological factors and interventional policy

Or straightforward

□ Find regions whose trends look similar: All the aforementioned factors have been priced in!

Forecasting with Attention Mechanism

Identified References

For Santa Barbara County during 06/12 ~ 06/22

- □ Most similar state: **North Carolina** during 03/31~04/10
- Most similar counties in NC:

Inter-Series Forecasting Model (ACTS)

an end-to-end training process to minimize the total error Paper link: <u>https://arxiv.org/abs/2010.13006</u>

Inside ACTS

Another View

CDC: COVID-19 Forecasting

	1										
						Method	1	measure: WAPE			ours
		YYG	CU	UCLA	ERDC	LANL	Covid	Deep	Conv	\mathbf{TFT}	ACTS
							Sim	COVID	Trans		
06/21	C	-	-	-	-	0.51	-	-	1.09	0.51	$0.39{\pm}0.01$
	Н	-	1.91	-	-	1.08	0.95	0.63	1.22	0.80	$0.80{\pm}0.02$
	D	0.52	1.48	0.56	-	0.58	1.46	0.66	1.09	0.67	$0.45{\pm}0.01$
07/05	С	-	-	-	-	0.37	-	-	0.37	0.39	0.33 ± 0.01
	Η	-	0.98	1.23	0.66	0.95	-	0.65	1.08	0.84	$0.61{\pm}0.04$
	D	0.45	0.65	0.53	0.38	0.52	-	0.85	0.60	0.51	$0.60 {\pm} 0.01$
07/19	С	-	-	-	-	0.27	-	-	0.50	0.44	0.31 ± 0.01
	Η	-	0.67	1.24	0.77	0.78	1.71	0.70	0.99	0.66	$0.60{\pm}0.03$
	D	0.30	0.43	0.39	1.10	0.48	0.33	0.4506	0.54	0.67	$0.28{\pm}0.01$
08/02	С	-	-	-	-	0.30	-	-	0.24	0.24	0.16 ± 0.04
	Η	-	0.67	0.95	0.71	0.68	1.66	0.79	0.93	0.92	$0.66{\pm}0.09$
	D	0.24	0.37	0.27	0.57	0.44	0.26	0.29	0.45	0.38	$0.21{\pm}0.01$
08/16	С	-	0.67	0.35	0.28	0.29	0.23	-	0.33	0.55	$0.20{\pm}0.03$
	Η	-	0.64	0.99	0.60	0.65	1.38	0.98	0.96	0.92	$0.57{\pm}0.02$
	D	0.19	0.42	0.25	0.53	0.34	0.27	0.28	0.44	0.31	0.23 ± 0.01
08/30	C	-	0.43	0.31	0.34	0.33	0.23	-	0.36	0.29	$0.23{\pm}0.03$
	Η	-	0.66	0.91	0.68	0.69	1.31	0.83	0.93	0.82	$0.58{\pm}0.03$
	D	0.20	0.41	0.23	0.56	0.34	0.25	0.36	0.42	0.40	$0.25 {\pm} 0.02$

C: New Cases, H: Hospitalizations, D: Deaths

https://github.com/Gandor26/covid-open

Many Models Are Improving

									ours
		YYG	CU	UCLA	ERDC	COVID Sim	Deep COVID	LANL	ACTS
09-14	С	-	0.43	0.40	0.37	-	-	0.42	0.34
	Н	-	0.74	0.69	0.66	-	0.67		0.64
	D	0.28	0.40	0.26	0.58	-	0.27	0.37	0.36
09-28	С	-	0.35	0.41	0.35	0.35	-	0.47	0.46
	н	-	0.65	0.71	0.69	0.81	0.65	0.75	0.63
	D	0.27	0.49	0.32	0.64	0.30	0.28	0.40	0.34
10-12	С	-	0.33	0.56	0.37	0.43	-	0.55	0.45
	н	-	0.61	0.78	0.69	0.90	0.60	0.61	0.57
	D	-	0.31	0.42	0.69	0.34	0.32	0.46	0.41

https://github.com/Gandor26/covid-open

warning: It doesn't indicate future performance

Result Analysis : Deaths

Ablation Study

C: New Cases, H: Hospitalizations, D: Deaths

- ACTS-d: Remove the detrending module
- ACTS-n: Remove the normalization in segment embedding
- ACTS-i: Restrict the attention to the target time series only.
- ACTS-f: Remove the additional features

Claim: If we directly use the Method of Analogues (Viboud et al. 2003), the error will be much higher as it is a model closer to ACTS-d-n-i-f.

Future Developments

Data-Driven Neural Models + SEIR + Global Trend + Additional Data

Currently we only use cases, hospitalizations, deaths, some limited demographical information. If you have other data sources or links, please let us know.

Q&A

Xifeng Yan xyan@cs.ucsb.edu