Artificial Intelligence

CS 165A
Mar 4, 2019

Instructor: Prof. Yu-Xiang Wang

→ Contextual bandits / Off-policy evaluation
→ Reinforcement Learning
Announcement

- Two weeks before the final!

- Due to a half lecture delay in the lecture material.
 - HW3 Q6 is now Q1 for HW4.

- This Thursday (Mar 7)
 - HW3 Q1-Q5 due.
 - HW4 released

- Next Thursday (Mar 14)
 - HW4 due
 - MP2 due
 - Review lecture
Recap: off-policy evaluation under the Contextual bandits model

- **Contexts:**
 - $x_1, \ldots, x_n \sim \lambda$ drawn iid, possibly infinite domain

- **Actions:**
 - $a_i \sim \mu(a|x_i)$ Taken by a randomized “Logging” policy

- **Reward:**
 - $r_i \sim D(r|x_i, a_i)$ Revealed only for the action taken

- **Value:**
 - $v_\mu = \mathbb{E}_{x \sim \lambda} \mathbb{E}_{a \sim \mu(\cdot|x)} \mathbb{E} D[r|x, a]$

- We collect data $(x_i, a_i, r_i)_{i=1}^n$ by the above processes.
Recap: Off-policy Evaluation and Learning

Off-policy evaluation

- Estimate the value of a fixed target policy π

 $$v_\pi := \mathbb{E}_\pi [\text{Reward}]$$

Off-policy learning

- Find $\pi \in \Pi$ that maximizes v_π

- Using data $(x_i, a_i, r_i)_{i=1}^n$

- Often the policy μ or logged propensities $(\mu_i)_{i=1}^n$
Recap: Clinical Trial and ATE estimation

Average Treatment Effect

\[\text{ATE} = E[Y \mid T = 1] - E[Y \mid T = 0] \]

Ignorability Assumption

- **Patient Information**
 - Patient information is entered into a computer

- **Random Selection**
 - The computer randomly assigns patients to two or more groups, helping to prevent bias

- **Control group**
 - Receives standard therapy

- **Investigational group**
 - Receives new treatment
Recap: Average Treatment Effect (ATE) estimation is a special case of off-policy evaluation

- **a**: Action ⟷ T: Treatment \{0,1\}
- **r**: Reward ⟷ Y: Response variable
- **x**: Contexts ⟷ X: covariates

- Take \(a = \{0,1\}, \pi = [0.5,0.5] \)
- \(r(x,a) = [2Y(X,T=1), -2Y(X,T=0)] \)

- Then, the value of \(\pi = \) ATE
Today

1. Estimators for off-policy evaluation

2. Tabular Reinforcement Learning
Direct Method / Regression estimator

• Fit a regression model of the reward

\[\hat{r}(x, a) \approx \mathbb{E}(r|x, a) \] using the data

• Then for any target policy

\[\hat{u}_{DM}^{\pi} = \frac{1}{n} \sum_{i=1}^{n} \sum_{a \in A} \hat{r}(x_i, a) \pi(a|x_i) \]

Pros:
• Low-variance.
• Can evaluate on unseen context × action

Cons:
• Often high bias
• The model can be wrong/hard to learn
Inverse propensity scoring / Importance sampling

(Horvitz & Thompson, 1952)

\[
\hat{\nu}_{\text{IPS}} = \frac{1}{n} \sum_{i=1}^{n} \frac{\pi(a_i | x_i)}{\mu(a_i | x_i)} r_i
\]

Importance weights \(\equiv \rho_i \)

Pros:
- No assumption on rewards
- Unbiased
- Computationally efficient

Cons:
- High variance when the weight is large
Best of both worlds: Doubly robust estimator

$$\hat{\nu}_\text{DR}^\pi = \hat{\nu}_\text{DM}^\pi + \frac{1}{n} \sum_{i=1}^{n} \frac{\pi(a_i|x_i)}{\mu(a_i|x_i)} (r_i - \hat{r}(x, a))$$

Main goal:
- Reduce variance
- Same idea as the use of a heuristic in A* search.

Baseline
Correction of the baseline using IPS
Performance of IPS, DM, DR on datasets

Recall from STAT101: \[\text{MSE} = \text{Bias}^2 + \text{Variance} \]

Doubly robust with estimated propensity

\[\hat{v}_{DR}^{\pi} = \hat{v}_{DM}^{\pi} + \frac{1}{n} \sum_{i=1}^{n} \pi \left(\frac{a_i | x_i}{\hat{\mu}_i} \right) (r_i - \hat{r}(x, a)) \]

- Why is it called Doubly Robust?

- Doubly robustness to model misspecification.
 - Consistency: as \(n \rightarrow \infty\), estimator \(\rightarrow\) true parameter
 - Consistent if either the reward model is unbiased or the propensity is consistent.
You can use IPS to construct a near-optimal algorithm for Contextual Bandits!

• Policy elimination
 – Use constructed IPS confidence interval to estimate regret and eliminate policies
 – Use logging policy that yields low variance IPS for all remaining policies.

• Motivates a coordinate descent algorithm
 – That makes efficient use of an “argmax oracle”.

• Out of scope for this class
So far

• RL applications, basic problem setup
 – Tabular MDP (illustrated using a Grid World example)

• Simplifying the RL and decomposing the challenges:
 – Multi-arm bandits: Challenges in the need to actively collect data
 • Solution: Explore-exploit, eps-greedy, UCB.
 – Contextual bandits: Challenges in large/continuous state-space.
 • Solution: Work with a policy class.

• It remains to address the challenges in planning
 – Tabular MDP
Recap: Reinforcement learning problem setup

- **State, Action, Reward and Observation**
 \[S_t \in S \quad A_t \in A \quad R_t \in \mathbb{R} \quad O_t \in \mathcal{O} \]

- **Policy:**
 - When the state is observable: \[\pi : S \rightarrow A \]
 - Or when the state is not observable
 \[\pi_t : (\mathcal{O} \times A \times \mathbb{R})^{t-1} \rightarrow A \]

- **Learn the best policy that maximizes the expected reward**

 - **Finite horizon (episodic) RL:** \[\pi^* = \arg \max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^{T} R_t] \]

 - **Infinite horizon RL:** \[\pi^* = \arg \max_{\pi \in \Pi} \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} R_t \right] \]

 \[\gamma: \text{discount factor} \]

 \[T: \text{horizon} \]
Tabular MDP

- State, Action, Reward and Observation
 \[S_t \in \mathcal{S} \quad A_t \in \mathcal{A} \quad R_t \in \mathbb{R} \quad O_t \in \mathcal{O} \]

- Policy:
 - When the state is observable: \(\pi : \mathcal{S} \rightarrow \mathcal{A} \)
 - Or when the state is not observable
 \[\pi_t : (\mathcal{O} \times \mathcal{A} \times \mathbb{R})^{t-1} \rightarrow \mathcal{A} \]

- Learn the best policy that maximizes the expected reward
 - Finite horizon (episodic) RL: \(\pi^* = \arg \max_{\pi \in \Pi} \mathbb{E} \left[\sum_{t=1}^{T} R_t \right] \)
 - Infinite horizon RL: \(\pi^* = \arg \max_{\pi \in \Pi} \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} R_t \right] \)

\(\gamma \): discount factor
Tabular MDP

• Simplifications in a Tabular MDP:
 – Finite State, Action (S States, A actions)
 – Observable state
 – Bounded reward (or at least bounded variance)
 – No restriction on the policy class

• Parameters of a tabular MDP:
 – Transition dynamics $P(s'| s,a)$ How many parameters? $S(S-1)A$
 – Expected immediate reward $E[r | s,a]$ How many parameters? SA
 – Initial state distribution $P(s)$ How many parameters? $S-1$

• Do we need to accurately estimate all S^2A parameters?

Potential Final exam question:
1. How to draw a BayesNet graphical model for an MDP?
2. How to draw a State-space diagram of an MDP?
Value functions

- state value function: \(V^\pi(s) \)
 - expected return when starting in \(s \) and following \(\pi \)

- state-action value function: \(Q^\pi(s,a) \)
 - expected return when starting in \(s \), performing \(a \), and following \(\pi \)

- useful for finding the optimal policy
 - can estimate from experience
 - pick the best action using \(Q^\pi(s,a) \)

- Bellman equation

\[
V^\pi(s) = \sum_a \pi(s, a) \sum_{s'} P^a_{ss'} \left[r^a_{ss'} + \gamma V^\pi(s') \right] = \sum_a \pi(s, a) Q^\pi(s, a)
\]
Optimal value functions

• there’s a set of optimal policies
 – V^π defines partial ordering on policies
 – they share the same optimal value function

$$V^*(s) = \max_{\pi} V^\pi(s)$$

• Bellman optimality equation

$$V^*(s) = \max_a \sum_{s'} P_{ss'}^a \left[r_{ss'}^a + \gamma V^*(s') \right]$$

 – system of n non-linear equations
 – solve for $V^*(s)$

$$Q^*(s, a) = \sum_{s'} P_{ss'}^a [r_{ss'}^a + \gamma \max_a Q^*(s', a)]$$

• having $Q^*(s, a)$ makes it even simpler

$$\pi^*(s) = \arg \max_a Q^*(s, a)$$
The Bellman equation implies that

- If we can estimate $Q^*(s,a)$, then the greedy policy on $Q^*(s,a)$ is the optimal policy!

- Recall in bandits problem:
 - The optimal policy is the greedy policy on $E[r | x, a]$

- The problem reduces to estimating $Q^*(s,a)$
 - You don’t need to estimate $Q^*(s,a)$ well for all s, a pairs
 - Only need to identify the best a for every s.

How many parameters do we need to represent $Q^*(s,a)$? Answer: SA
Example from Lecture 14: Robot in a room

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what’s the strategy to achieve max reward?
- what if the actions were deterministic?
Let’s work out the Value function for a specific policy

actions: UP, DOWN, LEFT, RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

\[
V^\pi(s) = \sum_a \pi(s, a) \sum_{s'} P^a_{ss'} \left[r^a_{ss'} + \gamma V^\pi(s') \right] = \sum_a \pi(s, a) Q^\pi(s, a)
\]

1.0 + \(\frac{8}{9} \times (1-0.04 + 0) \)

\(\frac{1}{9} \times (-0.04 + V^\pi(s')) \)
Dynamic programming

• main idea
 – use value functions to structure the search for good policies
 – need a perfect model of the environment

• two main components
 – policy evaluation: compute V^π from π
 – policy improvement: improve π based on V^π

 – start with an arbitrary policy
 – repeat evaluation/improvement until convergence
Policy evaluation/improvement

• policy evaluation: $\pi \rightarrow V^\pi$
 - Bellman eqn’s define a system of n eqn’s
 - could solve, but will use iterative version
 \[
 V_{k+1}(s) = \sum_a \pi(s, a) \sum_{s'} P_{ss'}^a [r_{ss'}^a + \gamma V_k(s')]
 \]
 - start with an arbitrary value function V_0, iterate until V_k converges

• policy improvement: $V^\pi \rightarrow \pi'$
 \[
 \pi'(s) = \arg \max_a Q^\pi(s, a)
 = \arg \max_a \sum_{s'} P_{ss'}^a [r_{ss'}^a + \gamma V^\pi(s')]
 \]
 - π' either strictly better than π, or π' is optimal (if $\pi = \pi'$)
Policy/Value iteration

- **Policy iteration**
 \[\pi_0 \to E \ V^{\pi_0} \to I \ \pi_1 \to E \ V^{\pi_1} \to I \ldots \to I \ \pi^* \to E \ V^* \]
 - two nested iterations; too slow
 - don’t need to converge to \(V^{\pi_k} \)
 - just move towards it

- **Value iteration**
 \[V_{k+1}(s) = \max_a \sum_{s'} P^{a}_{ss'} \left[r^{a}_{ss'} + \gamma V_k(s') \right] \]
 - use Bellman optimality equation as an update
 - converges to \(V^* \)
Drawback of the Dynamic Programming Approach

• need complete model of the environment and rewards
 – robot in a room
 • state space, action space, transition model

• ExploreFirst:
 – Randomly sample for a while, estimate the MDP parameters.
 – Switch to Greedy using DP.

• Do we need the model? Can we learn the Q function directly?
 – Monte-Carlo methods for estimating Q^π

Only S parameters for policy evaluation: $V^\pi(s)$

SA parameters for policy improvements: $Q^\pi(s,a)$
Monte Carlo policy evaluation

- want to estimate $V^\pi(s)$
 - expected return starting from s and following π
 - estimate as average of observed returns in state s

- first-visit MC
 - average returns following the first visit to state s

\[
V^\pi(s) \approx \frac{2 + 1 - 5 + 4}{4} = 0.5
\]
Monte Carlo control (policy optimization)

- V^π not enough for policy improvement
 - need exact model of environment

- estimate $Q^\pi(s,a)$
 $$\pi'(s) = \arg\max_a Q^\pi(s,a)$$

- MC control
 $$\pi_0 \rightarrow^E Q^{\pi_0} \rightarrow^I \pi_1 \rightarrow^E Q^{\pi_1} \rightarrow^I \ldots \rightarrow^I \pi^* \rightarrow^E Q^*$$
 - update after each episode

- Two problems
 - greedy policy won’t explore all actions **eps-greedy!**
 - We are maximizing $Q^\pi(s,a)$ but is it a good estimate of $Q^\pi'(s,a)$?

Importance sampling!
DP + MC = Temporal Difference Learning

• Idea of Monte Carlo
 \[V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)] , \]
 Issue: \(G_t \) can only be obtained after the entire episode!

• The idea of TD learning:
 \[\mathbb{E}_\pi[G_t] = \mathbb{E}_\pi[R_t | S_t] + \gamma V^\pi(S_{t+1}) \]
 We only need one step before we can plug-in and estimate the RHS!

• TD-Policy evaluation
 \[V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right] \]
 Bootstrapping!
Bootstrap’s origin

• “The Surprising Adventures of Baron Münchausen”
 – Rudolf Erich Raspe, 1785

In statistics: Brad Efron’s resampling methods
In operating systems: Booting…
In RL: It simply means TD learning
TD-control (policy optimization)

- **SARSA**
 - Update the Q function by bootstrapping Bellman Equation
 \[Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)] \]
 - Choose the next A’ using Q, e.g., eps-greedy.

- **Q-Learning**
 - Update the Q function by bootstrapping Bellman Optimality Eq.
 \[Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)] \]
 - Choose the next A’ using Q, e.g., eps-greedy.

Remarks:
- These are **proven to converge** asymptotically.
- Much more data-efficient in practice, than MC.
- Regret analysis is still active area of research.
Extension (using ideas we’ve already learned)

• Using doubly robust with a heuristic function?
 – Yes, it’s called RL with Function approximation! Part II of Sutton and Barto.

• Sometimes it does not converge…
 – Big open problem: How to use Function approximation with TD while still guarantee convergence?

• Idea from contextual bandits:
 – Parameterize the policy class (A neural network)
 – Direct online policy optimization?
Policy gradient

- Let’s not worry about states, dynamics, Q function.
 - We might not even observe the true state.
 - Let’s specify a class of parametrized policy and hope to compare to the best within this class

- Objective function to maximize: \(J(\theta) = v_{\pi_\theta}(s_0) \),

- Do SGD: \(\theta_{t+1} = \theta_t + \alpha \nabla J(\theta_t) \),

- Policy gradient theorem:

\[
\nabla J(\theta) \propto \sum_s \mu(s) \sum_a q_\pi(s, a) \nabla_\theta \pi(a|s, \theta),
\]
The REINFORCE algorithm (Williams, 1987)

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization $\pi(a|s, \theta)$
Initialize policy parameter $\theta \in \mathbb{R}^{d'}$
Repeat forever:
 Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \theta)$
 For each step of the episode $t = 0, \ldots, T-1$:
 $G \leftarrow$ return from step t
 $\theta \leftarrow \theta + \alpha \gamma^t G \nabla_{\theta} \ln \pi(A_t|S_t, \theta)$

• Essentially a reward-weighted MLE
• When the reward are nonnegative
 – Optimizing a causal policy-improvement Lower Bound (Ma, W., Narayanaswamy, 2019)
Alpha-Go!

- Parameterize the policy networks with CNN
- Supervised learning initialization
- RL using Policy gradient
- Fit Value Network (This is a heuristic function!)
- Monte-Carlo Tree Search

https://www.youtube.com/watch?v=4D5yGiYe8p4

Summary of RL algorithms

• Model-based:
 – Policy iteration / Value iteration
 – Global optimal solution (need to know the dynamics)

• Model-free: (no need to “explicitly” estimate dynamics)
 – SARSA, Q-learning
 – Global optimal solution (when the model’s correctly specified)

• Absolutely model-free (do not even need MDP model)
 – Policy gradient
 – Local search, local optimal solution