Artificial Intelligence

CS 165A
Jan 29, 2018

Instructor: Prof. Yu-Xiang Wang

→ Finish NaiveBayes
→ Unsupervised Learning
Announcements

• Homework 1 due today. Submit to TA Lei Xu now.

• The TAs have sent out an announcement to clarify things regarding MP1 on Piazza.

• You are allowed to collaborate on homework and machine problems, but you need to declare who you got help from about which question.

• Go to office hours! We are there to help you!
Notetaker wanted for DSP student

- We need someone to volunteer taking notes
- This is a paid job.
- Ask me more after the class.
Some questions on Piazza

• Textbook reading:
 – The AIMA textbook is our reference.
 – The lectures are not entirely based on AIMA and will sometimes go deeper / broader / more relevant to 2019.
 – Reading the textbook helps you. Use Wikipedia and Google too.

• Homework questions
 – They can be solved by the “principles” covered in the lecture.
 – Do not post your solution!
 – TA can give hints but not answers.
Today

• Finish off Naïve Bayes classifier

• Feature extraction

• Unsupervised Learning
 – k-means clustering and Gaussian mixture models
 – PCA and probabilistic PCA
 – Subspace clustering and Mixture of Probabilistic PCA
 – Latent Dirichlet Allocation for Topic Models
Notation (unless otherwise specified)

- d for dimension
- n for number of data points
- k for the number of classes / number of latent variables
The Naïve Bayes Classifier, revisited

- **Conditional Independence Assumption:** features are independent of each other given the class:

\[P(X_1, \ldots, X_5 \mid C) = P(X_1 \mid C) \cdot P(X_2 \mid C) \cdot \ldots \cdot P(X_5 \mid C) \]

- For binary: # of parameters reduce from
Naïve Bayes Classifier for Text Classification

• Problems
 – different documents have different length.
 – Words come in a sequence.

• Let dictionary size be d and (max length $=: H$)
 – # of parameters $= O(dkH)$.

• This is still too large.
 – Let’s ignore the ordering information of the words.
 – # of parameters $= O(dk)$.

• “Stan loves Eminem.” \Leftrightarrow “Eminem loves Stan.”
Bag of Words feature

Art display in CMU MLD

Excitement on Twitter:

“Profound artistic piece representing the struggle for representational power...”

“Dropped stop words is a nice touch QT @stanfordnlp CMU has a marvelous art installation of a bag of words #nlproc”
An example of extracting bag-of-word feature

Figure 7.1 Intuition of the multinomial naive Bayes classifier applied to a movie review. The position of the words is ignored (the bag of words assumption) and we make use of the frequency of each word.
Multinomial Naïve Bayes

• Condition on the label, each document is drawn from a Multinomial distribution
 – \(P(c) \sim \text{Categorical} (\tau) \)
 – \(P(x_1, x_2, \ldots, x_{n(i)}|c) = P(\text{BoW}(x_1, x_2, \ldots, x_{n(i)})|c) \sim \text{Multinomial}(\theta_c, n(i)) \)
 – \(n(i) \) denotes the length of \(i \)th document.

• Learning task:
 – Learn model parameters \(\tau \) and \(\theta_c \) for all \(c = 1, 2, \ldots, k \) from data
 – But how?

• By solving an optimization problem:
 – Maximum likelihood
 – Maximum A Posteriori (with a Dirichlet prior / Laplace smoothing)
 – (You will derive these in HW2!)
Violation of NB Assumptions

- Conditional independence
- “Positional independence”
Naïve Bayes Posterior Probabilities

• Classification results of naïve Bayes (the class with maximum a posteriori probability) are usually fairly accurate.

• However, due to the inadequacy of the conditional independence assumption, the actual posterior-probability numerical estimates are not accurate.
 – Output probabilities are generally very close to 0 or 1.
When does Naive Bayes work?

Sometimes NB performs well even if the Conditional Independence assumptions are badly violated.

Classification is about predicting the correct class label and NOT about accurately estimating probabilities.

Assume two classes c_1 and c_2. A new case A arrives. NB will classify A to c_1 if:

$$P(A, c_1) > P(A, c_2)$$

<table>
<thead>
<tr>
<th>Actual Probability</th>
<th>Estimated Probability by NB</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(A, c_1)$</td>
<td>$P(A, c_2)$</td>
</tr>
<tr>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>0.08</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Besides the big error in estimating the probabilities the classification is still correct.

Correct estimation \Rightarrow accurate prediction but NOT accurate prediction \Rightarrow Correct estimation
Naive Bayes is Not So Naive

- Naïve Bayes: First and Second place in KDD-CUP 97 competition, among 16 (then) state of the art algorithms
 Goal: Financial services industry direct mail response prediction model: Predict if the recipient of mail will actually respond to the advertisement - 750,000 records.

- Robust to Irrelevant Features
 Irrelevant Features cancel each other without affecting results
 Instead Decision Trees can heavily suffer from this.

- Very good in Domains with many equally important features
 Decision Trees suffer from fragmentation in such cases - especially if little data

- A good dependable baseline for text classification (but not the best)!

- Optimal if the Independence Assumptions hold: If assumed independence is correct, then it is the Bayes Optimal Classifier for problem

- Very Fast: Learning with one pass over the data; testing linear in the number of attributes, and document collection size

- Low Storage requirements

- Warning: There are other much advanced classifiers (Machine Learning Course)
Other popular features for text: TF-IDF

• Term Frequency (TF)
 - $TF(t) = \frac{\text{Number of times term } t \text{ appears in a document}}{\text{Total number of terms in the document}}$.

• Inverse Document Frequency (IDF)
 - $IDF(t) = \log_e\left(\frac{\text{Total number of documents}}{\text{Number of documents with term } t \text{ in it}}\right)$.

• TF-IDF = $TF(t) \times IDF$

• Really popular in Information Retrieval!
 - Especially in the 90s.
 - Deployed commercially everywhere.
 - Still used as a very strong baseline.
Word2Vec: Learned Representation

- Feature extractor φ: “Bayes” $\rightarrow [0.2, -0.34, 5.3]$

Often learned through unsupervised learning (topic of this lecture).

Gaussian Naïve Bayes Classifier

- $x_1, x_2, ..., x_n$ are continuous variables.
 - TF-IDF, Word2Vec are continuous variables!

- $P(x_i | c)$ is drawn from a Gaussian distribution.

- You will need to:
 - Deriving MLE, MAP for Gaussian naïve Bayes in HW2!
 - Implement them and try them out in MP1.
Unsupervised Learning

• Supervised learning is about finding f such that y=f(x)
 – Important to observe labels y

• Unsupervised learning is about
 – Learning to reduce dimension
 – Learning compact representation of x
 – Learning a feature representation

• How to learn without labels?
 – By learning $x = f(x)$
 – Restricting f to an “easy” class
A deep learning example: Autoencoder
Convolutional NN based Autoencoder

ML watches YouTube for three straight days!
(and learns to recognize cats?!)
Recall: Generative vs. Discriminative Model

- Generative model starts with a probabilistic description of how the data are generated.
 - This gives rise to an objective function to optimize via MLE or MAP.

- Discriminative models ignores probabilities and directly specifies the objective function to optimize.

- Questions to think about:
 - Do I need to fully describe the world?
 - Do I need to have a probabilistic framework at all?
 - Optimal solution in an approximation of the world vs. Approximal solution to the actual problem

Often they do very similar things.

- Types of unsupervised learning
 - Clustering: k-means clustering --- Gaussian Mixture Models
 - Dimension reduction: PCA --- Probabilistic PCA
 - Clustering/Dimension reduction at the same time
 Subspace Clustering --- Mixture of Prob. PCA
K-Means clustering

- Objective function:
 \[
 \min_{c_1, \ldots, c_k} \sum_i \min_{j \in [k]} \|x_i - c_j\|^2
 \]

- Algorithm: Lloyd’s algorithm.
 - Randomly initialize the centers at data points.
 - Assign data points to closest center.
 - Update centers to be the mean of the data points assigned to it.

- A typical run of Lloyd’s algorithm:
Gaussian Mixture Model

- Generative process:
 \[\theta_{i=1 \ldots K} \]
 \[\mu_{i=1 \ldots K} \]
 \[\sigma^2_{i=1 \ldots K} \]
 \[z_{i=1 \ldots N} \]
 \[x_{i=1 \ldots N} \]

- Graphical model:

\[\{ \mu_{i=1 \ldots K}, \sigma^2_{i=1 \ldots K} \} = \text{mean of component } i \]
\[= \text{variance of component } i \]
\[\sim \text{Categorical}(\phi) \]
\[\sim \mathcal{N}(\mu_{z_i}, \sigma^2_{z_i}) \]
The EM algorithm of Gaussian mixture model

• **E-step**: Soft assignments of data points to each mixture components via posterior distribution.

• **M-step**: Update the parameters of each Gaussian by maximizing the likelihood.
 – When variance goes to 0. This converges to the Lloyd’s algorithm!
The probabilistic framework helps the algorithm to be more robust.

Different cluster analysis results on "mouse" data set:

Original Data k-Means Clustering EM Clustering

*When the assumptions are approximately true.
Principle Components Analysis

- Given data x in \mathbb{R}^d, find best k-dimensional approximations that explains the variance of the data.

$$
\min_{W \in \mathbb{R}^{d \times k}} \| WW^T - \text{Cov}(X) \|_F^2
$$

$$
\text{Cov}(X) = \frac{1}{n} (x_i - \bar{x})(x_i - \bar{x})^T
$$

![Second principal component](image-url)
Probabilistic Principle Component Analysis

• Generative process:

\[z_i \sim N(0, \sigma^2 I_k) \]
\[x_i \sim N(\mu, WW^T + \sigma^2 I_d) \]

• BayesNet of PPCA: (from Chris Bishop)
PCA vs. MLE of Prob. PCA

- Sample covariance matrix:

\[\text{Cov}(X) = \frac{1}{n} (x_i - \bar{x})(x_i - \bar{x})^T \]

- Singular Value decomposition of \(\text{Cov}(X) = U \Lambda U' \)

- PCA: Output \(U[:, 1:k] \Lambda[:, 1:k]^{1/2} \)

- PPCA’s MLE: \(W_{\text{MLE}} = U[:, 1:k](\Lambda[:, 1:k] - \sigma^2 I_k)^{1/2} \)

\[
\sigma_{\text{MLE}}^2 = \frac{1}{d - k} \sum_{j=k+1}^{d} \lambda_j
\]
Eigenface: a nice application of PCA!

- Matthew Turk (UCSB CS) and Pentland (MIT)
Clustering and Dimension Reduction at the Same time? Subspace Clustering problems.

- Model-based: Assume data are close to Union-of-subspaces --- Sparse Subspace Clustering and etc…
- Model-free: Find best k-subspace approximation.
 - Q-flats, k-planes. Studied mostly in CS theory.
Mixture of Probabilistic PCA

\[c_i \sim \text{Categorical}(\tau) \]
Algorithms for subspace clustering

- **EM for MPPCA.**
 - Statistically sound but easily stuck at local minima.

- **Gibbs sampling for MPPCA**
 - Not a polynomial time algorithm.
 - Sampling in high-dimension is generically hard.

- **Sparse Subspace Clustering** (Elhamifar and Vidal, 2009)
 - Works amazingly well for the “model-based” subspace clustering
 - Robust theoretical guarantee well-understood:
 - Soltanolkotabi and Candes (2012), W. and Xu (2013) and many more…

- **Initializing EM of MPPCA with SSC?**
 - Possibly a low-hanging fruit…
Applications of subspace clustering

• Self-driving car
• Hyperspectral imaging
• Face clustering
• And more!
Topic modelling: Latent Dirichlet Allocation (A Dirichlet Admixture Model)

1) Draw each topic $\beta_k \sim \text{Dirichlet}(\eta)$

2) For each document:
 1) Draw topic proportions $\theta_d \sim \text{Dirichlet}(\alpha)$
 2) For each word:
 1) Draw $z_{di} \sim \text{Mult}(\theta_d)$
 2) Draw $\omega_{di} \sim \text{Mult}(\beta_{z_{di}})$

Example of LDA: Topics and Assignments of Documents to those Topics.
Plans for subsequent lectures

• Last lecture and this
 – Modelling the world
 – Coming up with objective functions to optimize

• On Thursday
 – Scalable algorithm to optimize these objective functions

• Next Tuesday
 – Data is not generated from our model
 – Future data are not in our training data set
 – Why does this work at all?