CS292A Convex Optimization:

Gradient methods and Online Learning
Spring 2019

Instructor: Prof. Yu-Xiang Wang



Administrative information

* Instructor: Yu-Xiang Wang

» Office hour: No official office hour. After the class or by
appointment.

e Course website:
https://www.cs.ucsb.edu/~yuxiangw/classes/CS292A-
2019Spring/

* Questions and Discussion: Piazza

* Homework submission: Gradescope


https://www.cs.ucsb.edu/~yuxiangw/classes/CS292A-2019Spring/

Access to the Homework Folder
on the Course Website

e Username: (CS292A
e Password: Ask me in the class.

* HW1 is already released!



Course evaluation

* 80% Homeworks (a total of 4 homeworks)

* 15% Reading Notes

* Compulsory readings of the textbook chapters / notes /
papers.
* Write a summary (>1 pages).

* Due at the beginning of each lecture. Starting on
Thursday!

* 5% Participation
* Ask questions in the class



Forms of the lectures

e Slides + Whiteboard

* We hope to produce a nicely typeseted scribed
notes that everyone can keep.

* Bonus 5% for signing up to scribe lectures!
 Limited Slots, sign up early.



Course Schedule / Scribed Notes

Week Date Topic

Intro + Convex Set and Convex

1 2-Apr

Reading Assignment

BV Ch.1, Ch.2, Ch.3HW1 out [pdf data]

Function
4-Apr Convex Optimization Basics BV Ch. 4
2 9-Apr No class, prof travelling
11-Apr No class, prof travelling
3 16-Apr Gradient Descent BV ChS.1-9.4 HW2 out / HW1 Due
18-Apr Subgradient and subdifferential Boyd's subgradient
notes
4 23-Apr Subgradient method and Boyd's subgradient
P Proximal Gradient Descent method notes
25-Apr Stochastic (sub)gradient Section 1-5 of
P methods Boyd's SGD notes)
. Lecture 11 and 12
i 30-Apr Duality of CMU 10-725
. . Lecture 13 and 14
2-May KKT conditions and its usage of of CMU 10-725 HW3 out / HW2 due.
6 7-Ma Advanced topics: Acceleration, TBA. Beck and
Y Lower Bounds Teboulle.
L e Johnson and Zhang
g-May ~ Advancedfopics: FRle SUm. (913), Ghadimi
EEE and Lan (2013)
E 14-May Intro ‘to online learning: . Hazan Ch 1
Learning_from expert advice
16-May Online (Projected)_Gradient Hazan Ch 3 HW4 Out, HW3 Due
Descent
8 21-May No class, NeurIPS deadline
23-May No class, NeurIPS deadline
9 28-May Follow the Regularized Leader Hazan Ch 5
30-May Multi-armed Bandits Hazan Ch 6.1 - 6.2 grtl#s due / HW#4
10 4-Jun 0OCO with Bandits Feedback Hazan Ch 6.3-6.5 HW#4 due / MP2 due
Nonstationary Stochastic Besbes et al.
6-Jun Optimization and Dynamic (2013), Chen et al.
Regret (2018)

Scribe

No class next week!

Convex Optimization
First order optimization

No class on the 8th Week!

Online Learning



What will you learn?

* How to formulate problems as convex optimization problem.

* Understand properties such as convexity, Lipschitzness, smoothness and
the computational guarantees that come with these conditions.

e Learn optimality conditions and duality and use them in your research.

* Understand the connection of first order optimization and online
learning.

* Know how to prove convergence bounds and analyze no-regret online
learning algorithms.



Why focusing on First Order
Methods?

* A quarter is short. The professor is lazy.

* They are arguably most useful for machine learning
» Scalable, one pass (few passes) algorithms.
* Information-theoretically near optimal for ML.

* Closer to the cutting edge research world
* SGD, SDCA, SAG, SAGA, SVRGKatyucsha, Natasha

 Strong guarantee in machine learning with no distributional
assumptions.

 Basically the only way to train deep learning models.



Cautionary notes

* The course is a PhD level course and it requires
hardwork!
 Time, effort
* Alot of math
e Substantial homework with both math and coding

* Be ready to be out of your comfort zone

* It will be totally worth it.



Things that | expect you to know
already

* Basic real analysis

e Basic multivariate calculus

* Basic linear algebra

* Basic machine learning

* Basic probability theory + tail bounds

e Familiarity with at least one of the following:
Matlab, Numpy, Julia

* | will post some review materials in Piazza.



Acknowledgment

* A big part of the lectures will be based on Ryan
Tibshirani’s 10-725 in Carnegie Mellon University.

* For the online learning part of it, we will mostly
follow Elad Hazan’s book: Introduction to Online
Convex Optimization
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Optimization in Machine Learning and Statistics

Optimization problems underlie nearly everything we do in Machine
Learning and Statistics. In many courses, you learn how to:

translate ? into P : min f(z)
= z€D
Conceptual idea Optimization problem
Examples of this? Examples of the contrary?

This course: how to solve P, and why this is a good skill to have
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Presumably, other people have already figured out how to solve

P géilr)l fx)

So why bother? Many reasons. Here's three:

1. Different algorithms can perform better or worse for different
problems P (sometimes drastically so)

2. Studying P through an optimization lens can actually give you
a deeper understanding of the statistical procedure

3. Knowledge of optimization can actually help you create a new
P that is even more interesting/useful

Optimization moves quickly as a field. But there is still much room
for progress, especially its intersection with ML and Stats
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Example: algorithms for the 2d fused lasso

The 2d fused lasso or 2d total variation denoising problem:

n

o1 2
min > Z(yi —0;)"+ A Z |0; — 0]
=1 (3,5)EE
This fits a piecewise constant function over an image, given data
Yy, t =1,...,n at pixels. Here A > 0 is a tuning parameter

~

True image Data Solution
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Our problem:

1

n

5 S wi— 0+ XD (0,05

min —
6

i=1 (.)€l

Specialized ADMM, 20 it-
erations
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. 1y 2
Our problem: min 5 Z:(yZ —60;)°+ A Z 0; — 0]
1=1 (i,))eE

Specialized ADMM, 20 it-
erations

Proximal gradient descent,
1000 iterations




. 1y 2
Our problem: min 5 Z:(yZ —60;)°+ A Z 0; — 0]
1=1 (i,))eE

Specialized ADMM, 20 it-
erations

Proximal gradient descent,
1000 iterations

Coordinate descent, 10K
cycles
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. 1y 2
Our problem: min 5 Z:(yZ —60;)°+ A Z 0; — 0]
1=1 (i,))eE

Specialized ADMM, 20 it-
erations

Proximal gradient descent,
1000 iterations

Coordinate descent, 10K
cycles

(Last two from the dual)
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What's the message here?

So what's the right conclusion here?

Is the alternating direction method of multipliers (ADMM) method
simply a better method than proximal gradient descent, coordinate
descent? ... No

In fact, different algorithms will perform better or worse in different
situations. We'll learn details throughout the course

In the 2d fused lasso problem:
® Special ADMM: fast (structured subproblems)
® Proximal gradient: slow (poor conditioning)

e Coordinate descent: slow (large active set)

16



Example: sparse linear modeling

Given y € R™ and a matrix X € R™*P, with p > n. Suppose that
we know that

y~Xp*

for some unknown coefficient vector 3* € RP. Can we generically
solve for g*7 ... No!

But if 8* is known to be sparse (i.e., have many zero entries), then
it's a whole different story

;- EEEE
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There are many different approaches for estimating 5*. A popular
approach is to solve the lasso problem:

min o Sl — X813 + XS,

Here A > 0 is a tuning parameter, and ||B]|1 = >_%_, |8i| denotes
the ¢4 norm of 3

There are numerous algorithms for computing a lasso solution (in
fact, it can be cast as a quadratic program)

Furthermore, some key statistical insights can be derived from the
Karush-Kuhn-Tucker (KKT) optimality conditions for the lasso
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Lasso support recovery

The KKT conditions for the lasso problem are

XT(y— XB) = s

{+1}  5;>0
sjeq{-1} Bj<0, forj=1,...,p

We call s a subgradient of the ¢; norm at (3, denoted s € 9|51

Under favorable conditions (low correlations in X, large nonzeros
in 3*), can show that lasso solution has same support as 5*

Proof idea: plug in (shrunken version of) §* into KKT conditions,

and show that they are satisfied with high probability (primal-dual
witness method of Wainwright 2009)

19



Widsom from Friedman (1985)

From Jerry Friedman's discussion of Peter Huber's 1985 projection
pursuit paper, in Annals of Statistics:

A good idea poorly implemented will not work well and will likely be judged not
good. It is likely that the idea of projection pursuit would have been delayed even
further if working implementations of the exploratory (Friedman and Tukey,
1974) and regression (Friedman and Stuetzle, 1981) procedures had not been
produced. As data analytic algorithms become more complex, this problem
becomes more acute. The best way to guard against this is to become as literate
as possible in algorithms, numerical methods and other aspects of software
implementation. I suspect that more than a few important ideas have been
discarded because a poor implementation performed badly.

Arguably, less true today due to the advent of disciplined convex
programming? Maybe, but it still rings true in large part ...

20



Central concept: convexity

Historically, linear programs were the focus in optimization

Initially, it was thought that the important distinction was between
linear and nonlinear optimization problems. But some nonlinear
problems turned out to be much harder than others ...

Now it is widely recognized that the right distinction is between
convex and nonconvex problems

Your supplementary textbooks for the course:

Boyd and Vandenberghe A Rockafellar

Optimization

(2004) ©o(1970) (R

Analysis
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Convex sets and functions

Convex set: C' C R™ such that
z,yeC = te+(1—-t)yeC forall 0<t<1

O &

Convex function: f:R™ — R such that dom(f) C R™ convex, and
fz+ (1 —=t)y) <tf(x)+ (1 —1t)f(y) forall 0<t<1
and all z,y € dom(f)

(v, f(v))
(w, f(x))
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Convex optimization problems

Optimization problem:
min f(x)
subject to ¢g;(x) <0,i=1,...m

Here D = dom(f) N2, dom(g;) N(;—, dom(h;), common
domain of all the functions

This is a convex optimization problem provided the functions f
and g;,7 = 1,...m are convex, and h;,j = 1,...p are affine:

hj(:v):ajrqubj, j=1,...p
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Local minima are global minima
For convex optimization problems, local minima are global minima

Formally, if x is feasible—x € D, and satisfies all constraints—and
minimizes f in a local neighborhood,

f(z) < f(y) for all feasible y, ||z —y|l2 < p,

then
f(x) < f(y) for all feasible y
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This is a very useful
fact and will save us
a lot of trouble!

Convex Nonconvex



In summary: why convexity?

Why convexity? Simply put: because we can broadly understand
and solve convex optimization problems

Nonconvex problems are mostly treated on a case by case basis

777

777
77

Reminder: a convex optimization problem is of
the form

min f(x)
subject to  g;(x)

where f and g;, ¢ = 1,...m are all convex, and
hj, j = 1,...r are affine. Special property: any
local minimizer is a global minimizer
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Remainder of today's lecture

Convex sets

Examples

Key properties

Operations preserving convexity

Same, for convex functions
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Convex sets

Convex set: C' C R"™ such that
z,yeC = te+(1—-t)yeC forall 0<t<1

In words, line segment joining any two elements lies entirely in set

O &

Convex combination of x1,...z; € R™: any linear combination
01z + ...+ 0y

with 6; > 0,7=1,...k, and Zle ; = 1. Convex hull of a set C,
conv(C), is all convex combinations of elements. Always convex
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Examples of convex sets

Trivial ones: empty set, point, line

Norm ball: {z : ||x|| < r}, for given norm || - ||, radius r
Hyperplane: {x : a”x = b}, for given a,b

Halfspace: {z:a”x < b}

Affine space: {x : Az = b}, for given A, b
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¢ Polyhedron: {z : Az < b}, where inequality < is interpreted
componentwise. Note: the set {x : Az < b,Cx =d} is also a
polyhedron (why?)

a
1 az

ag

ay

e Simplex: special case of polyhedra, given by conv{zy,...zy},
where these points are affinely independent. The canonical
example is the probability simplex,

conv{er,...ep} ={w:w>0, 1Tw =1}
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Cones

Cone: C C R" such that
re(C — texeC forallt>0
Convex cone: cone that is also convex, i.e.,

r1,9 € C = t1x1 +1taxg € C forall t1,19 >0

Conic combination of x1,...x; € R™: any linear combination
9133'1 + ...+ 0k$k

with 6; > 0,9 =1,...k. Conic hull collects all conic combinations

30



Examples of convex cones

® Norm cone: {(x,t) : ||z|| < t}, for a norm || - ||. Under the {2
norm || - ||2, called second-order cone

® Normal cone: given any set C' and point = € C, we can define

Ne(x)={g: g7z > gly, forallyeC}

. This is always a convex cone,
regardless of C

® Positive semidefinite cone: §7 = {X € §" : X > 0}, where
X > 0 means that X is positive semidefinite (and §" is the
set of n X n symmetric matrices)
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Key properties of convex sets

® Separating hyperplane theorem: two disjoint convex sets have
a separating between hyperplane them

Formally: if C, D are nonempty convex sets with C'N D = (),
then there exists a, b such that

C’g{x:aTrvgb}
Dg{x:aT:UZb}

32



® Supporting hyperplane theorem: a boundary point of a convex
set has a supporting hyperplane passing through it

Formally: if C'is a nonempty convex set, and xy € bd(C),
then there exists a such that

C Clx:a’s <alxy)

Both of the above theorems (separating and supporting hyperplane
theorems) have partial converses; see Section 2.5 of BV
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Operations preserving convexity

® |ntersection: the intersection of convex sets is convex

® Scaling and translation: if C is convex, then
aC+b={ar+b:zeC}

is convex for any a, b

e Affine images and preimages: if f(z) = Az +band C'is
convex then
F(C)=A{f(z) : zeC}
is convex, and if D is convex then

fHD)={z: f(z) € D}

is convex
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Example: linear matrix inequality solution set

Given Ay, ... A, B € §", a linear matrix inequality is of the form
1Ay + 20As + ...+ 2 A =X B

for a variable z € R”. Let's prove the set C' of points x that satisfy
the above inequality is convex

Approach 1: directly verify that 2,y € C =tz + (1 — t)y € C.
This follows by checking that, for any v,

k
vl (B - Z(t:z:l +(1- t)yi)Ai)v >0
i=1
Approach 2: let f: RF — §", f(z) =B — Zle z;A;. Note that
C = f~1(§7), affine preimage of convex set
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More operations preserving convexity

® Perspective images and preimages: the perspective function is
P:R"™ xR, — R"™ (where Ry denotes positive reals),

P(z,z)=x/z

for z > 0. If C C dom(P) is convex then so is P(C'), and if
D is convex then so is P~1(D)

® |inear-fractional images and preimages: the perspective map
composed with an affine function,

B Ax +b
Tr+d

/()

is called a linear-fractional function, defined on ¢’z +d > 0.
If C C dom(f) is convex then so if f(C), and if D is convex
then so is f~1(D)
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Example: conditional probability set

Let U,V be random variables over {1,...n} and {1,...m}. Let
C C R™ be a set of joint distributions for U,V , i.e., each p € C
defines joint probabilities

p”:P(U:Z,V:])

Let D C R™™ contain corresponding conditional distributions, i.e.,
each ¢ € D defines

Assume C' is convex. Let's prove that D is convex. Write

D:{qeR"m:qz‘j:%, for some peC} = f(O)

where f is a linear-fractional function, hence D is convex
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Convex functions
Convex function: f : R™ — R such that dom(f) C R™ convex, and
flz+ (1 =t)y) <tf(z)+ (A -1)f(y) for 0<t<1

and all z,y € dom(f)

In words, function lies below the line segment joining f(x), f(y)
Concave function: opposite inequality above, so that

f concave <= —f convex
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Important modifiers:

® Strictly convex: f(tz + (1 —t)y) < tf(z)+ (1 —1t)f(y) for
x#yand 0 <t<1. Inwords, f is convex and has greater
curvature than a linear function

® Strongly convex with parameter m > 0: f — 2||z||3 is convex.

In words, f is at least as convex as a quadratic function

Note: strongly convex = strictly convex = convex

(Analogously for concave functions)
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Examples of convex functions

Univariate functions:
» Exponential function: e®* is convex for any a over R
» Power function: z® is convex for a > 1 or a < 0 over R
(nonnegative reals)
» Power function: x® is concave for 0 < a < 1 over R
» Logarithmic function: logx is concave over R,

Affine function: a®z + b is both convex and concave

Quaderatic function: %xTQm + Tz + ¢ is convex provided that
Q@ = 0 (positive semidefinite)

Least squares loss: ||y — Az||3 is always convex (since AT A is
always positive semidefinite)
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® Norm: ||z| is convex for any norm; e.g., £, norms,

n 1/p
ey = (Zx) for p> 1, alloe = max |
1=
and also operator (spectral) and trace (nuclear) norms,
T
[Xllop = o1(X), [ X[ler = > _on(X)
i=1

where 01(X) > ... > 0,(X) > 0 are the singular values of
the matrix X
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® |ndicator function: if C is convex, then its indicator function

0 zeC

fe(w) = oo z¢C

is convex

® Support function: for any set C' (convex or not), its support

function
I (x) = max 2t
o(z) e Y

is convex

® Max function: f(x) = max{xi,...x,} is convex
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Key properties of convex functions

e A function is convex if and only if its restriction to any line is
convex

® Epigraph characterization: a function f is convex if and only
if its epigraph

epi(f) = {(z,t) € dom(f) x R: f(x) <t}
is a convex set
® Convex sublevel sets: if f is convex, then its sublevel sets
{z € dom(f) : f(a) < t}

are convex, for all t € R. The converse is not true
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® First-order characterization: if f is differentiable, then f is
convex if and only if dom(f) is convex, and

fy) 2 fz) + Vf(2)" (y — )

for all 2,y € dom(f). Therefore for a differentiable convex
function Vf(z) =0 <= x minimizes f

® Second-order characterization: if f is twice differentiable, then
f is convex if and only if dom(f) is convex, and V2f(z) = 0
for all x € dom(f)

® Jensen's inequality: if f is convex, and X is a random variable
supported on dom(f), then f(E[X]) < E[f(X)]
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Operations preserving convexity

® Nonnegative linear combination: fq,... f;, convex implies
a1fi1+ ...+ amfm convex for any ay,...a;, >0

® Pointwise maximization: if fs is convex for any s € .S, then
f(x) = maxgeg fs(x) is convex. Note that the set S here
(number of functions fs) can be infinite

® Partial minimization: if g(z,y) is convex in x,y, and C'is
convex, then f(z) = minyec g(x,y) is convex
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Example: distances to a set

Let C be an arbitrary set, and consider the maximum distance to
C' under an arbitrary norm || - ||:

= a. —_
Fla) = mas [l ]

Let's check convexity: f,(x) = ||z — y|| is convex in z for any fixed
Yy, so by pointwise maximization rule, f is convex

Now let C' be convex, and consider the minimum distance to C:
) =min ||z —
f(a) = min [lo =]

Let's check convexity: g(z,y) = || — y|| is convex in z,y jointly,
and C' is assumed convex, so apply partial minimization rule
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More operations preserving convexity

e Affine composition: if f is convex, then g(z) = f(Az +b) is
convex

® General composition: suppose f = ho g, where g : R — R,
h:R—=R, f:R"— R. Then:

> fis convex if h is convex and nondecreasing, g is convex
P fis convex if h is convex and nonincreasing, g is concave
> fis concave if h is concave and nondecreasing, g concave
» f is concave if h is concave and nonincreasing, g convex

How to remember these? Think of the chain rule when n = 1:

(@) = h"(g(@))g'(x)* + W (g(x))g" ()

47



® \/ector composition: suppose that

f(@) =h(g(z)) = h(g1 (), ... gi(x))

where g : R - R¥ h:R¥ 5 R, f:R® - R. Then:

» f is convex if h is convex and nondecreasing in each
argument, g is convex

> fis convex if h is convex and nonincreasing in each
argument, g is concave

> f is concave if h is concave and nondecreasing in each
argument, g is concave

» f is concave if h is concave and nonincreasing in each
argument, g is convex
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Example: log-sum-exp function

Log-sum-exp function: g(x) = log(Z- €% Tbi) for fixed a;, by,
i=1,...k. Often called “soft max", as it smoothly approximates

maxi:Lmk (a?$ + bl)

How to show convexity? First, note it suffices to prove convexity of
f(x) =log(> 1, ) (affine composition rule)

Now use second-order characterization. Calculate

eri

Ze 1690’Z
e 6

s =) -

Write V2f(z) = diag(z) — 227, where z; = €% /(Y_}_, €%). This
matrix is diagonally dominant, hence positive semidefinite

Vif(x) =

Viif(a) =
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References and further reading

® S. Boyd and L. Vandenberghe (2004), “Convex optimization”,
Chapters 2 and 3

e J.P. Hiriart-Urruty and C. Lemarechal (1993), “Fundamentals
of convex analysis”, Chapters A and B

e R. T. Rockafellar (1970), “Convex analysis”, Chapters 1-10,
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