
Modern Stochastic Methods

Yu-Xiang Wang
CS292A

(Based on Ryan Tibshirani’s 10-725)



Last time: KKT conditions

We talked about (the subgradient version of) the KKT condition,
which is always a sufficient condition for optimality and also
necessary when there is strong duality.

Example use cases are:

• Solve a constrained problem directly.

• Understand the structures of a solution (Sparsity, Low rank)

• Propose primal solution that we believe is optimal, construct a
dual certificate that checks the KKT condition.

• Construct Primal Solution from the Dual and Dual solution
from the primal.

• Use duality gap to measure convergence.

2



Last time: Conjugates and Fenchel duality

Given a function f : Rn → R, we define its conjugate f∗ : Rn → R,

f∗(y) = max
x

yTx− f(x)

Properties and examples:

• Conjugate f∗ is always convex (regardless of convexity of f)

• When f is a quadratic in Q � 0, f∗ is a quadratic in Q−1

• When f is a norm, f∗ is the indicator of the dual norm unit
ball

• When f is closed and convex, x ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x)

Fenchel duality:

Primal : min
x

f(x) + g(Ax)

Dual : max
u
−f∗(ATu)− g∗(−u)

3



Last time: Dual correspondences

Primal Dual

m-Strongly Convex 1/m-Smooth
Norm-regularization Indicator of a Dual-Norm Ball
Quadratic function Quadratic function
Additive Objective Coordinate Separable Objective

4



Recall: Stochastic gradient descent

Consider minimizing an average of functions

min
x

1

n

n∑
i=1

fi(x)

As ∇∑n
i=1 fi(x) =

∑n
i=1∇fi(x), gradient descent or GD repeats:

x(k) = x(k−1) − tk ·
1

n

n∑
i=1

∇fi(x(k−1)), k = 1, 2, 3, . . .

In comparison, stochastic gradient descent or SGD repeats:

x(k) = x(k−1) − tk · ∇fik(x(k−1)), k = 1, 2, 3, . . .

where ik ∈ {1, . . . n} is randomly chosen index at iteration k. Note
E[∇fik(x)] = ∇f(x), so we use unbiased estimate of full gradient

5



Recall: Convergence rates

Recall the following:

Condition GD rate SGD rate

Convex O(1/
√
k) O(1/

√
k)

+ Lipschitz gradient O(1/k) O(1/
√
k)

+ Strongly convex O(ck) O(1/k)

Notes:

• In GD, we can take fixed step sizes in the latter two cases

• In SGD, we always take diminishing step sizes to control the
variance (of the gradient estimate)

6



Recall: End of the story?

Is this the end of the story? SGD simply cannot adapt to strong
convexity, and this is the best we can hope for?

For a while, the answer was believed to be yes, as Nemirovski and
others established matching lower bounds ... however this was for
general stochastic problem, where

f(x) =

∫
F (x, ξ) dP (ξ)

For finite sums (our focus)

f(x) =
1

n

n∑
i=1

fi(x)

new wave of variance reduction work shows we can modify SGD to
converge much faster, basically retaining the properties of GD

7



Outline

Rest of today:

• Fast Gradient methods: (SAG, SAGA, SDCA, SVRG)

• Acceleration and momentum

• Adaptive step sizes (AdaGrad, ADAM, SignSGD)

8



Stochastic average gradient

Stochastic average gradient or SAG (Schmidt, Le Roux, and Bach
2013) is a breakthrough method in stochastic optimization:

• Maintain table, containing gradient gi of fi, i = 1, . . . n

• Initialize x(0), and g
(0)
i = ∇fi(x(0)), i = 1, . . . n

• At steps k = 1, 2, 3, . . ., pick random ik ∈ {1, . . . n}, then let

g
(k)
ik

= ∇fik(x(k−1)) (most recent gradient of fik )

Set all other g
(k)
i = g

(k−1)
i , i 6= ik, i.e., these stay the same

• Update

x(k) = x(k−1) − tk ·
1

n

n∑
i=1

g
(k)
i

9



Notes:

• Key of SAG is to allow each fi, i = 1, . . . n to communicate a
part of the gradient estimate at each step

• This basic idea can be traced back to incremental aggregated
gradient (Blatt, Hero, Gauchman, 2006)

• SAG gradient estimates are no longer unbiased, but they have
greatly reduced variance

• Isn’t it expensive to average all these gradients? Basically just
as efficient as SGD, as long we’re clever:

x(k) = x(k−1) − tk ·
(
g
(k)
ik

n
−
g
(k−1)
ik

n
+

1

n

n∑
i=1

g
(k−1)
i︸ ︷︷ ︸

old table average

)

︸ ︷︷ ︸
new table average

10



SAG convergence analysis

Assume that f(x) = 1
n

∑n
i=1 fi(x), where each fi is differentiable,

and ∇fi is Lipschitz with constant L

Denote x̄(k) = 1
k

∑k−1
`=0 x

(`), the average iterate after k − 1 steps

Theorem (Schmidt, Le Roux, Bach): SAG, with a fixed step
size t = 1/(16L), and the initialization

g
(0)
i = ∇fi(x(0))−∇f(x(0)), i = 1, . . . n

satisfies

E[f(x̄(k))]− f? ≤ 48n

k

(
f(x(0))− f?

)
+

128L

k
‖x(0) − x?‖22

where the expectation is taken over random choices of indices

11



Notes:

• Result stated in terms of the average iterate x̄(k), but also can

be shown to hold for best iterate x
(k)
best seen so far

• This is O(1/k) convergence rate for SAG. Compare to O(1/k)
rate for GD, and O(1/

√
k) rate for SGD

• But, the constants are different! Bounds after k steps:

GD :
L

2k
‖x(0) − x?‖22

SAG :
48n

k

(
f(x(0))− f?

)
+

128L

k
‖x(0) − x?‖22

• So first term in SAG bound suffers from factor of n; authors
suggest smarter initialization to make f(x(0))− f? small (e.g.,
they suggest using result of n SGD steps)

12



Convergence under strong convexity

Assume further that each fi is strongly convex with parameter m

Theorem (Schmidt, Le Roux, Bach): SAG, with a step size
t = 1/(16L) and the same initialization as before, satisfies

E[f(x(k))]− f? ≤
(

1−min
{ m

16L
,

1

8n

})k
×(

3

2

(
f(x(0))− f?

)
+

4L

n
‖x(0) − x?‖22

)
Notes:

• This is linear convergence rate O(ck) for SAG. Compare this
to O(ck) for GD, and only O(1/k) for SGD

• Like GD, we say SAG is adaptive to strong convexity (achieves
better rate with same settings)

• Proofs of these results not easy: 15 pages, computed-aided!

13



Example: logistic regression

Back to our logistic regression, SGD versus SAG, over 30 reruns of
these randomized algorithms:

0 500 1000 1500 2000

0.
00

02
0.

00
06

0.
00

10
0.

00
14

Iteration number k

C
rit

er
io

n 
ga

p 
fk

 −
 fs

ta
r

SG
SAG

14



Notes:

• SAG does well, but did not work out of the box; required a
specific setup

• Took one full cycle of SGD (one pass over the data) to get
β(0), and then started SGD and SAG both from β(0). This
warm start helped a lot

• SAG initialized at g
(0)
i = ∇fi(β(0)), i = 1, . . . n, computed

during initial SGD cycle. Centering these gradients was much
worse (and so was initializing them at 0)

• Tuning the fixed step sizes for SAG was very finicky; here now
hand-tuned to be about as large as possible before it diverges

• Authors of SAG conveyed that this algorithm will work the
best, relative to SGD, for ill-conditioned problems (the current
problem not being ill-conditioned at all)

15



SAGA

SAGA (Defazio, Bach, and Lacoste-Julien 2014) is a follow-up on
the SAG work:

• Maintain table, containing gradient gi of fi, i = 1, . . . n

• Initialize x(0), and g
(0)
i = ∇fi(x(0)), i = 1, . . . n

• At steps k = 1, 2, 3, . . ., pick random ik ∈ {1, . . . n}, then let

g
(k)
ik

= ∇fik(x(k−1)) (most recent gradient of fik )

Set all other g
(k)
i = g

(k−1)
i , i 6= ik, i.e., these stay the same

• Update

x(k) = x(k−1) − tk ·
(
g
(k)
ik
− g(k−1)ik

+
1

n

n∑
i=1

g
(k−1)
i

)

16



Notes:

• SAGA gradient estimate g
(k)
ik
− g(k−1)ik

+ 1
n

∑n
i=1 g

(k−1)
i , versus

SAG gradient estimate 1
ng

(k)
ik
− 1

ng
(k−1)
ik

+ 1
n

∑n
i=1 g

(k−1)
i

• Recall, SAG estimate is biased; remarkably, SAGA estimate is
unbiased! Simple explanation: consider family of estimators

θα = α(X − Y ) + E(Y )

for E(X), where α ∈ [0, 1], and X,Y are presumed correlated.
We have

E(θα) = αE(X) + (1− α)E(Y )

Var(θα) = α2
(
Var(X) + Var(Y )− 2Cov(X,Y )

)
SAGA uses α = 1 (unbiased), SAG uses α = 1/n (biased)

• SAGA matches convergence rates of SAG, with simpler proofs

17



Example: logistic regression

Back to our logistic regression example, now adding SAGA to mix:

0 500 1000 1500 2000

0.
00

02
0.

00
06

0.
00

10
0.

00
14

Iteration number k

C
rit

er
io

n 
ga

p 
fk

 −
 fs

ta
r

SG
SAG
SAGA

18



Notes:

• SAGA does well, but again it required somewhat specific setup

• As before, took one full cycle of SGD (one pass over the data)
to get β(0), and then started SGD, SAG, SAGA all from β(0).
This warm start helped a lot

• SAGA initialized at g
(0)
i = ∇fi(β(0)), i = 1, . . . n, computed

during initial SGD cycle. Centering these gradients was much
worse (and so was initializing them at 0)

• Tuning the fixed step sizes for SAGA was fine; seemingly on
par with tuning for SGD, and more robust than tuning for SAG

• Interestingly, the SAGA criterion curves look like SGD curves
(realizations being jagged and highly variable); SAG looks very
different, and this really emphasizes the fact that its updates
have much lower variance

19



Many, many others

A lot of recent work revisiting stochastic optimization:

• SDCA (Shalev-Schwartz, Zhang, 2013): applies coordinate
ascent to the dual of ridge regularized problems, and uses
randomly selected coordinates. Effective primal updates are
similar to SAG/SAGA
(Primal dual convergence. Example of dual separation! )

• SVRG (Johnson, Zhang, 2013): like SAG/SAGA, but does not
store a full table of gradients, just an average, and updates
this occasionally

• There’s also S2GD (Konecny, Richtarik, 2014), MISO (Mairal,
2013), Finito (Defazio, Caetano, Domke, 2014), etc.

• Both the SAG and SAGA papers give very nice reviews and
discuss connections

20



SVRG: Stochastic Variance Reduced Gradient

• Initialize x̃ = x0.
• For s = 1, 2, ... (Outer Loop)

1. Take a snapshot x̃ = x̃s−1

2. Calculate the full gradient: g̃ = 1
n

∑n
i=1∇fi(x̃).

3. Set x0 = x̃.
4. For t = 1, 2, ..., N (Inner Loop)

a. Randomly sample it ∈ {1, 2, ..., n}
b. xt = xt−1 − η(∇fit(xt−1)−∇fit(x̃) + g̃)

5. Set x̃s = xt with t chosen at random from {0, 1, ..., N − 1}.

Convergence: When N = 32L/m and η = 1/8L, the sequence
converges at a rate EFn(x̃s)− F ∗n ≤ (23)s(F (x0)− F ∗). Or if we
rewrite it in terms of the number of incremental gradient oracle
calls

O ((n+ L/m) log(1/ε)) .

21



Ideas in the convergence proof

1. Variance reduction: E[‖g̃t‖2]→ 0 as the number of iterations
t gets larger.

2. Eventually g̃ is as good as ∇F (xt). Thus, we can use a
constant learning rate!

3. Analyze the outer loop convergence.

22



Optimality and acceleration

For finite sums, Lan and Zhou (2015) (also Woodworth and Srebro
2016) prove lower bounds, that do no match to upper bounds from
SAG, SAGA (and others). E.g., for strongly convex setting:

• SAG, SAGA, SDCA, SVRG (and others) have iteration
complexity:

O

((
n+

L

m

)
log(1/ε)

)
• Lower bound:

O

((
n+

√
nL

m

)
log(1/ε)

)

Can we do better? Yes! Use acceleration (Lan and Zhou 2015, Lin
et al., 2015)

23



Momentum and beyond

Variance reduction + acceleration completely solve the finite sum
case. Beyond this, the story is much more complicated ...

• Recall, for general stochastic setting, the performance of SGD
cannot be improved (matching lower bounds in Nemirovski et
al. 2009)

• Acceleration is less used for nonconvex problems (?), but a
related technique is often used: momentum

• Predates acceleration by nearly two decades (Polyak, 1964).
In practice, Polyak’s heavy ball method can work really well:

x(k) = x(k−1) + α(x(k−1) − x(k−2))− tk∇fik(x(k−1))

but it can also be somewhat fragile

• Open problem: when and why does this work?

24



Polyak’s heavy ball versus Nesterov acceleration, in optimizing a
convex quadratic (from Shi et al., 2018):

k
0 50 100 150

f
(x

k
)
−
f
(x

⋆
)

10-4

10-3

10-2

10-1

100

101

Heavy-ball method: s=0.09
NAG-SC:                 s=0.09

Figure 1: A numerical comparison between NAG-SC and heavy-ball method. The objective function (ill-
conditioned µ/L ≪ 1) is f(x1, x2) = 5 × 10−3x2

1 + x2
2, with the initial iterate (1, 1).

algorithms to obtain ordinary differential equations (ODEs) that can be analyzed using the rich
toolbox associated with ODEs, including Lyapunov functions3. For instance, [SBC16] shows that

Ẍ(t) +
3

t
Ẋ(t) + ∇f(X(t)) = 0, (1.8)

with initial conditions X(0) = x0 and Ẋ(0) = 0, is the exact limit of NAG-C (1.5) by taking the
step size s → 0. Alternatively, the starting point may be a Lagrangian or Hamiltonian frame-
work [WWJ16]. In either case, the continuous-time perspective not only provides analytical power
and intuition, but it also provides design tools for new accelerated algorithms.

Unfortunately, existing continuous-time formulations of acceleration stop short of differentiating
between the heavy-ball method and NAG-SC. In particular, these two methods have the same
limiting ODE (see, for example, [WRJ16]):

Ẍ(t) + 2
√

µẊ(t) + ∇f(X(t)) = 0, (1.9)

and, as a consequence, this ODE does not provide any insight into the stronger convergence results
for NAG-SC as compared to the heavy-ball method. As will be shown in Section 2, this is because

the gradient correction
1−√

µs
1+

√
µss (∇f(xk) − ∇f(xk−1)) = O(s1.5) is an order-of-magnitude smaller

than the other terms in (1.4) if s = o(1). Consequently, the gradient correction is not reflected in
the low-resolution ODE (1.9) associated with NAG-SC, which is derived by simply taking s → 0 in
both (1.2) and (1.4).

1.2 Overview of Contributions

Just as there is not a singled preferred way to discretize a differential equation, there is not a single
preferred way to take a continuous-time limit of a difference equation. Inspired by dimensional-

3One can think of the Lyapunov function as a generalization of the idea of the energy of a system. Then the
method studies stability by looking at the rate of change of this measure of energy.

4

25



Adaptive step sizes

Another big topic in stochastic optimization these days: adaptive
step sizes

To motivate, let’s consider a logistic regression problem, where xij
are binary, and many of them are zero. E.g., classifying whether a
given movie review is positive or negative:

Piece of subtle art. Maybe a masterpiece. Doubtlessly a special
story about the ambiguity of existence.

Some words are common (blue) and uninformative and some rare
(green) and informative. Here:

• xij represents whether the jth word is present in ith review

• yi represents the ith review is positive or negative (sentiment)

26



Recall we have fi(β) = −yixTi β + log(1 + exp(xTi β)), and

∇fi(β) =

(
− yi +

1

1 + exp(−xTi β)

)
xi

Observation: xij = 0 implies that ∇jfi(β) = 0. Also ‖∇fi(β)‖2 is
large when ith review is misclassified

So what does SGD do?

• Gives equal weight to common and to rare informative words

• Diminishing step sizes tk means the rare informative features
are learned very slowly ...

To escape this long wait, we’ll have to adapt the step sizes to pick
up the informative features

27



AdaGrad

AdaGrad (Duchi, Hazan, and Singer 2010): very popular adaptive
method. Let g(k) = ∇fik(x(k−1)), and update for j = 1, . . . p:

x
(k)
j = x

(k−1)
j − α ·

g
(k)
j√∑k

`=1(g
(`)
j )2

Notes:

• AdaGrad does not require tuning learning rate: α > 0 is fixed
constant, learning rate decreases naturally over iterations

• Learning rate of rare informative features diminishes slowly

• Can drastically improve over SGD in sparse problems

• More recent variations Adam, RMSProp, etc., very popular in
training deep nets

28



Adam and SignSGD

• ADAM: (Kingma and Ba, ICLR’2015)

x
(k)
j = x

(k−1)
j − α ·

m
(k)
j√

v
(k)
j + ε

where m(k) = β1m
(k−1) + (1− β1)g(k),

v
(k)
j = β2v

(k−1)
j + (1− β2)[g(k)]2.

• SignSGD with momentum: (Bernstein, W., Azizzadenesheli,
Anandkumar, ICML’18)

x
(k)
j = x

(k−1)
j − α · sign(m

(k)
j ).

32x savings in the communication! Elegant convergence
bound. Related to the steepest descent method with an
`∞-norm (Section 9.4, BV book).

29



SignSGD in practice is very similar to ADAM

Imagenet with ResNet50. Staircasing Learning Rate.

SIGNSGD: Compressed Optimisation for Non-Convex Problems

Figure 3. Imagenet train and test accuracies using the momentum
version of SIGNSGD, called SIGNUM, to train Resnet-50 v2. We
based our implementation on an open source implementation by
github.com/tornadomeet. Initial learning rate and weight
decay were tuned on a separate validation set split off from the
training set and all other hyperparameters were chosen to be those
found favourable for SGD by the community. There is a big jump
at epoch 95 when we switch off data augmentation. SIGNUM gets
test set performance approximately the same as ADAM, better than
SGD with out weight decay, but about 2% worse than SGD with
a well-tuned weight decay.

Remark 1: switching optimisers after a warmup period is
in fact commonly done by practitioners (Akiba et al., 2017).

Remark 2: the theory suggests that momentum can be used
to control a bias-variance tradeoff in the quality of stochas-
tic gradient estimates. Sending � ! 1 kills the variance
term in k~�k1 due to averaging gradients over a longer time
horizon. But averaging in stale gradients induces bias due
to curvature of f(x), and this blows up the �k~Lk1 term.

Remark 3: for generality, we state this theorem with a tun-
able learning rate �. For variety, we give this theorem in
any-time form with a growing batch size and decaying learn-
ing rate. This comes at the cost of log factors appearing.

We benchmark SIGNUM on Imagenet (Figure 3) and CIFAR-
10 (Figure A.3 of supplementary). The full results of a giant
hyperparameter grid search for the CIFAR-10 experiments
are also given in the supplementary. SIGNUM’s performance
rivals ADAM’s in all experiments.

6. Discussion
Gradient compression schemes like TERNGRAD (Wen et al.,
2017) quantise gradients into three levels {0, ±1}. This is
desirable when the ternary quantisation is sparse, since it
can allow further compression. Our scheme of majority vote
should easily be compatible with a ternary quantisation—
in both directions of communication. This can be cast as
“majority vote with abstention”. The scheme is as follows:
workers send their vote to the parameter server, unless they
are very unsure about the sign of the true gradient in which
case they send zero. The parameter-server counts the votes,

and if quorum is not reached (i.e. too many workers dis-
agreed or abstained) the parameter-server sends back zero.
This extended algorithm should readily fit into our theory.

In Section 2 we pointed out that SIGNSGD and SIGNUM
are closely related to ADAM. In all our experiments we find
that SIGNUM and ADAM have very similar performance,
although both lose out to SGD by about 2% test accuracy
on Imagenet. Wilson et al. (2017) observed that ADAM
tends to generalise slightly worse than SGD. Though it
is still unclear why this is the case, perhaps it could be
because we don’t know how to properly regularise such
methods. Whilst we found that neither standard weight
decay nor the suggestion of Loshchilov & Hutter (2017)
completely closed our Imagenet test set gap with SGD, it is
possible that some other regularisation scheme might. One
idea, suggested by our theory, is that SIGNSGD could be
squashing down noise levels. There is some evidence (Smith
& Le, 2018) that a certain level of noise can be good for
generalisation, biasing the optimiser towards wider valleys
in the objective function. Perhaps, then, adding Gaussian
noise to the SIGNUM update might help it generalise better.
This can be achieved in a communication efficient manner
in the distributed setting by sharing a random seed with each
worker, and then generating the same noise on each worker.

Finally, in Section 3 we discuss some geometric implica-
tions of our theory, and provide an efficient and robust exper-
imental means of measuring one aspect—the ratio between
noise and gradient density—through the Welford algorithm.
We believe that since this density ratio is easy to measure, it
may be useful to help guide those doing architecture search,
to find network architectures which are amenable to fast
training through gradient compression schemes.

7. Conclusion
We have presented a general framework for studying
sign-based methods in stochastic non-convex optimisa-
tion. We present non-vacuous bounds for gradient com-
pression schemes, and elucidate the special `1 geome-
tries under which these schemes can be expected to suc-
ceed. Our theoretical framework is broad enough to han-
dle signed-momentum schemes—like SIGNUM—and also
multi-worker distributed schemes—like majority vote.

Our work touches upon interesting aspects of the geome-
try of high-dimensional error surfaces, which we wish to
explore in future work. But the next step for us will be to
reach out to members of the distributed systems community
to help benchmark the majority vote algorithm which shows
such great theoretical promise for 1-bit compression in both
directions between parameter-server and workers.

Figure extracted from (Bernstein, W., Azizzadenesheli,
Anandkumar, ICML’18)

30



References and further reading

References for finite sum:

• M. Schmidt and N. Le Roux and F. Bach (2013), “Minimizing
finite sums with the stochastic average gradient”

• S. Shalev-Shwartz and T. Zhang (2013). “Stochastic dual
coordinate ascent methods for regularized loss minimization”.

• R. Johnson and T. Zhang. (2013). “Accelerating stochastic
gradient descent using predictive variance reduction”.

• A. Defasio and F. Bach and S. Lacoste-Julien (2014), “SAGA:
A fast incremental gradient method with support for
non-strongly convex composite objectives”

More on Allen-Zhu’s excellent ICML’17 tutorial.

31



References and further reading

Adaptive Gradient Methods References.

• J. Duchi and E. Hazan and Y. Singer (2010), “Adaptive
subgradient methods for online learning and stochastic
optimization”

• D.P. Kingma and J.L. Ba (2015) “ADAM: A Method for
Stochastic Optimization”

• J. Bernstein, Y.X. Wang and K. Azizzadenesheli and A.
Anandkumar. (2018) “SIGNSGD: compressed optimisation for
non-convex problems.”

Other pioneering work.

• G. Lan and Y. Zhou (2015), “An optimal randomized
incremental gradient method”.

• A. Nemirovski and A. Juditsky and G. Lan and A. Shapiro
(2009), “Robust stochastic optimization approach to
stochastic programming”.

32


