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Last time: KKT conditions

We talked about (the subgradient version of) the KKT condition,
which is always a sufficient condition for optimality and also
necessary when there is strong duality.

Example use cases are:

® Solve a constrained problem directly.

Understand the structures of a solution (Sparsity, Low rank)

Propose primal solution that we believe is optimal, construct a
dual certificate that checks the KKT condition.

Construct Primal Solution from the Dual and Dual solution
from the primal.

Use duality gap to measure convergence.



Last time: Conjugates and Fenchel duality
Given a function f : R™ — R, we define its conjugate f* : R" — R,
F*(y) = max y'z — f(x)

Properties and examples:
e Conjugate f* is always convex (regardless of convexity of f)
® When f is a quadratic in Q = 0, f* is a quadratic in Q!
® When f is a norm, f* is the indicator of the dual norm unit
ball
® When f is closed and convex, z € 0f*(y) < y € df(z)

Fenchel duality:
Primal : min f(z) + g(Ax)
Dual : max —f*(ATu) — g*(—u)



Last time: Dual correspondences

Primal Dual

m-Strongly Convex
Norm-regularization
Quadratic function
Additive Objective

1/m-Smooth
Indicator of a Dual-Norm Ball
Quadratic function
Coordinate Separable Objective



Recall: Stochastic gradient descent

Consider minimizing an average of functions
N
min — i
R ’
As VY, filz) = > Vfi(z), gradient descent or GD repeats:
1 n
(k) — pk=1) _ 4, L (z* DY, k=1,2,3,...
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In comparison, stochastic gradient descent or SGD repeats:
a®) = k=) g Vfik@(kil))u k=1,2,3,...

where i, € {1,...n} is randomly chosen index at iteration k. Note
E[V f;, ()] = Vf(z), so we use unbiased estimate of full gradient



Recall: Convergence rates

Recall the following:

Condition GD rate | SGD rate
Convex O(1/VEk) | O(1/Vk)

+ Lipschitz gradient | O(1/k) | O(1/Vk)
+ Strongly convex O(c") O(1/k)

Notes:

® |n GD, we can take fixed step sizes in the latter two cases

® In SGD, we always take diminishing step sizes to control the
variance (of the gradient estimate)



Recall: End of the story?

Is this the end of the story? SGD simply cannot adapt to strong
convexity, and this is the best we can hope for?

For a while, the answer was believed to be yes, as Nemirovski and
others established matching lower bounds ... however this was for
general stochastic problem, where

f@) = [ Pl ap)
For finite sums (our focus)
fla) = -3 file)
=1

new wave of variance reduction work shows we can modify SGD to
converge much faster, basically retaining the properties of GD



Outline

Rest of today:
¢ Fast Gradient methods: (SAG, SAGA, SDCA, SVRG)
® Acceleration and momentum
® Adaptive step sizes (AdaGrad, ADAM, SignSGD)



Stochastic average gradient

Stochastic average gradient or SAG (Schmidt, Le Roux, and Bach
2013) is a breakthrough method in stochastic optimization:

® Maintain table, containing gradient g; of f;, i =1,...n

o Initialize (), and ¢\” = V£;(z©), i=1,...n

® Atsteps k =1,2,3,..., pick random i € {1,...n}, then let

ggf) =Vfi, (x(k_l)) (most recent gradient of f;, )

Set all other ggk) = ggk_l), i # g, i.e., these stay the same

® Update

1 n
(k) — p=1) _y = § : (k)
T T tr n 2 g



Notes:
® Key of SAG is to allow each f;, i =1,...n to communicate a
part of the gradient estimate at each step

® This basic idea can be traced back to incremental aggregated
gradient (Blatt, Hero, Gauchman, 2006)

® SAG gradient estimates are no longer unbiased, but they have
greatly reduced variance

® Isn't it expensive to average all these gradients? Basically just
as efficient as SGD, as long we're clever:

g(k) g(k 1)

n

old table average

new table average
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SAG convergence analysis

Assume that f(z) = 1 3% | f;(x), where each f; is differentiable,

and Vf; is Lipschitz with constant L

Denote (%) = E Ze o 19, the average iterate after k — 1 steps

Theorem (Schmidt, Le Roux, Bach): SAG, with a fixed step
size t = 1/(16L), and the initialization

o = V@) = Vi), i=1..n

satisfies

480 1) 1281

E[f@®)] - f < =~ (f(

|12 — 2|3

_f*)_|_

where the expectation is taken over random choices of indices
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Notes:

e Result stated in terms of the average iterate Z(¥), but also can

be shown to hold for best iterate xg:)st

® This is O(1/k) convergence rate for SAG. Compare to O(1/k)
rate for GD, and O(1/v/k) rate for SGD

® But, the constants are different! Bounds after k steps:

seen so far

L
. (0) %2
GD : —QkHcL‘ x5
48n . 198L .
5aG: (@) — 1) + 20

® So first term in SAG bound suffers from factor of n; authors
suggest smarter initialization to make f(z(©) — f* small (e.g.,
they suggest using result of n SGD steps)
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Convergence under strong convexity

Assume further that each f; is strongly convex with parameter m

Theorem (Schmidt, Le Roux, Bach): SAG, with a step size
t = 1/(16L) and the same initialization as before, satisfies

E[f(z®))] — f* < <1 - min{%, 8172})k X

4L
() - )+ Z1a0 - o7pp)

Notes:
e This is linear convergence rate O(c*) for SAG. Compare this
to O(c¥) for GD, and only O(1/k) for SGD

e Like GD, we say SAG is adaptive to strong convexity (achieves
better rate with same settings)

® Proofs of these results not easy: 15 pages, computed-aided!
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Example: logistic regression

Back to our logistic regression, SGD versus SAG, over 30 reruns of
these randomized algorithms:
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Notes:

® SAG does well, but did not work out of the box; required a
specific setup

® Took one full cycle of SGD (one pass over the data) to get
B and then started SGD and SAG both from 5. This
warm start helped a lot

* SAG initialized at ¢!” = V£,(8©), i = 1,...n, computed
during initial SGD cycle. Centering these gradients was much
worse (and so was initializing them at 0)

® Tuning the fixed step sizes for SAG was very finicky; here now
hand-tuned to be about as large as possible before it diverges

® Authors of SAG conveyed that this algorithm will work the
best, relative to SGD, for ill-conditioned problems (the current
problem not being ill-conditioned at all)



SAGA

SAGA (Defazio, Bach, and Lacoste-Julien 2014) is a follow-up on
the SAG work:

® Maintain table, containing gradient g; of f;, i =1,...n

o Initialize 2, and ¢\” = V£;(2©®), i=1,...n

e Atsteps k =1,2,3,..., pick random i, € {1,...n}, then let
gz-(]]:) =V, (x(k’,fl)) (most recent gradient of f;, )

Set all other gz(k) = ggk_l), 1 # iy, i.e., these stay the same
® Update

k) _ (k-1 (k) (k-1) , 1 - (k—1)
RO >_tk.<gik — g +nz;gz. )
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Notes:
® SAGA gradient estimate gl(f) — gi(f*l) + % Yoy ggkfl), versus
SAG gradient estimate %ggj) — %ggj_l) + s gt

® Recall, SAG estimate is biased; remarkably, SAGA estimate is
unbiased! Simple explanation: consider family of estimators

0o = a(X —Y) + E(Y)

for E(X), where o € [0, 1], and X, Y are presumed correlated.
We have

E(0y) = oE(X) + (1 — a)E(Y)
Var(6,) = o (Var(X) + Var(Y) — 2Cov(X,Y))
SAGA uses a = 1 (unbiased), SAG uses o = 1/n (biased)

® SAGA matches convergence rates of SAG, with simpler proofs
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Example: logistic regression

Back to our logistic regression example, now adding SAGA to mix:
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Notes:

e SAGA does well, but again it required somewhat specific setup

® As before, took one full cycle of SGD (one pass over the data)
to get ,6’(0), and then started SGD, SAG, SAGA all from 5(0).
This warm start helped a lot

® SAGA initialized at g,go) = Vfi(ﬁ(o)), i=1,...n, computed

during initial SGD cycle. Centering these gradients was much
worse (and so was initializing them at 0)

® Tuning the fixed step sizes for SAGA was fine; seemingly on
par with tuning for SGD, and more robust than tuning for SAG

® |Interestingly, the SAGA criterion curves look like SGD curves
(realizations being jagged and highly variable); SAG looks very
different, and this really emphasizes the fact that its updates
have much lower variance



Many, many others

A lot of recent work revisiting stochastic optimization:

® SDCA (Shalev-Schwartz, Zhang, 2013): applies coordinate
ascent to the dual of ridge regularized problems, and uses
randomly selected coordinates. Effective primal updates are
similar to SAG/SAGA
(Primal dual convergence. Example of dual separation! )

® SVRG (Johnson, Zhang, 2013): like SAG/SAGA, but does not
store a full table of gradients, just an average, and updates
this occasionally

® There's also S2GD (Konecny, Richtarik, 2014), MISO (Mairal,
2013), Finito (Defazio, Caetano, Domke, 2014), etc.

® Both the SAG and SAGA papers give very nice reviews and
discuss connections
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SVRG: Stochastic Variance Reduced Gradient

® |nitialize T = xg.
® For s =1,2,... (Outer Loop)
Take a snapshot & = Z5_1
Calculate the full gradient: g =1 3" | Vf;(2).
Set xg = 7.
Fort=1,2,...,N (Inner Loop)
a. Randomly sample i; € {1,2,...,n}
b. & =x¢—1 — U(Vfit ($t71) - Vflt (‘%) +§)
5. Set s = x4 with ¢ chosen at random from {0,1,..., N — 1}.

el =

Convergence: When N = 32L/m and n = 1/8L, the sequence
converges at a rate EF,,(&,) — F; < (3)*(F(wo) — F*). Or if we
rewrite it in terms of the number of incremental gradient oracle
calls

O ((n+ L/m)log(1/e)) .
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Ideas in the convergence proof

. Variance reduction: E[||g]|?] — 0 as the number of iterations
t gets larger.

. Eventually g is as good as VF'(x;). Thus, we can use a
constant learning rate!

. Analyze the outer loop convergence.
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Optimality and acceleration

For finite sums, Lan and Zhou (2015) (also Woodworth and Srebro
2016) prove lower bounds, that do no match to upper bounds from
SAG, SAGA (and others). E.g., for strongly convex setting:

® SAG, SAGA, SDCA, SVRG (and others) have iteration

complexity:
0<(n + %) log(l/e))

0<(n + \/f) log(l/e)>

Can we do better? Yes! Use acceleration (Lan and Zhou 2015, Lin
et al., 2015)

® | ower bound:
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Momentum and beyond

Variance reduction + acceleration completely solve the finite sum
case. Beyond this, the story is much more complicated ...

® Recall, for general stochastic setting, the performance of SGD

cannot be improved (matching lower bounds in Nemirovski et
al. 2009)

® Acceleration is less used for nonconvex problems (?), but a
related technique is often used: momentum

¢ Predates acceleration by nearly two decades (Polyak, 1964).
In practice, Polyak's heavy ball method can work really well:

o) = g1 o (1) — g (k=2)) 1V fir (zF=1)

but it can also be somewhat fragile

® QOpen problem: when and why does this work?
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Polyak’'s heavy ball versus Nesterov acceleration, in optimizing a
convex quadratic (from Shi et al., 2018):

10’

Heavy-ball method: s=0.09
-+NAG-SC: s=0.09

10° E




Adaptive step sizes

Another big topic in stochastic optimization these days: adaptive
step sizes

To motivate, let's consider a logistic regression problem, where x;;
are binary, and many of them are zero. E.g., classifying whether a
given movie review is positive or negative:

Piece of subtle art. Maybe a masterpiece. Doubtlessly a special
story about the ambiguity of existence.

Some words are common (blue) and uninformative and some rare
(green) and informative. Here:

® x;; represents whether the jth word is present in ith review

® y; represents the ith review is positive or negative (sentiment)
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Recall we have f;(8) = —y;zl B + log(1 + exp(z! 3)), and

1
1+ exp(—a?B) ) .

VA8 = (-

Observation: x;; = 0 implies that V; f;(8) = 0. Also |V fi(B)]]2 is
large when ith review is misclassified

So what does SGD do?

® Gives equal weight to common and to rare informative words

® Diminishing step sizes t; means the rare informative features
are learned very slowly ...

To escape this long wait, we'll have to adapt the step sizes to pick
up the informative features
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AdaGrad

AdaGrad (Duchi, Hazan, and Singer 2010): very popular adaptive
method. Let g(*) = V£; (2(*=1)), and update for j =1,...p:

o

x(k) _ (k=1
l
S (gi)2

=

J J Q-

Notes:

® AdaGrad does not require tuning learning rate: a > 0 is fixed
constant, learning rate decreases naturally over iterations

® | earning rate of rare informative features diminishes slowly
® Can drastically improve over SGD in sparse problems

® More recent variations Adam, RMSProp, etc., very popular in
training deep nets
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Adam and SignSGD
e ADAM: (Kingma and Ba, ICLR'2015)

e
' k=) _ .
J J
W+ €
where m®) = gymE=1 4 (1- ﬁl)g(k).
o = B0 (1= ) g2

¢ SignSGD with momentum: (Bernstein, W., Azizzadenesheli,
Anandkumar, ICML'18)
k k—1 . k
x§ ) :xg- ) —a-81gn(m§. )).
32x savings in the communication! Elegant convergence
bound. Related to the steepest descent method with an
lso-norm (Section 9.4, BV book).

29



SignSGD in practice is very similar to ADAM

Imagenet with ResNet50. Staircasing Learning Rate.
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Figure extracted from (Bernstein, W., Azizzadenesheli,
Anandkumar, ICML'18)
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References and further reading

References for finite sum:
e M. Schmidt and N. Le Roux and F. Bach (2013), “Minimizing
finite sums with the stochastic average gradient”
¢ S. Shalev-Shwartz and T. Zhang (2013). “Stochastic dual
coordinate ascent methods for regularized loss minimization”.
e R. Johnson and T. Zhang. (2013). “Accelerating stochastic
gradient descent using predictive variance reduction”.

e A. Defasio and F. Bach and S. Lacoste-Julien (2014), “SAGA:
A fast incremental gradient method with support for
non-strongly convex composite objectives”

More on Allen-Zhu's excellent ICML'17 tutorial.
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References and further reading

Adaptive Gradient Methods References.

¢ J. Duchi and E. Hazan and Y. Singer (2010), “Adaptive
subgradient methods for online learning and stochastic
optimization”

¢ D.P. Kingma and J.L. Ba (2015) "ADAM: A Method for
Stochastic Optimization”

® J. Bernstein, Y.X. Wang and K. Azizzadenesheli and A.
Anandkumar. (2018) “SIGNSGD: compressed optimisation for
non-convex problems.”

Other pioneering work.

® G. Lan and Y. Zhou (2015), “An optimal randomized
incremental gradient method”.

® A. Nemirovski and A. Juditsky and G. Lan and A. Shapiro
(2009), “Robust stochastic optimization approach to
stochastic programming” .
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