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13.1 Follow the Leader (FTL) Algorithm

In the OCO setting of regret minimization, the most intuitive way is to use at any time the optimal decision
in hindsight. Let

xt+1 = arg min
x∈K

t∑
τ=1

fτ (x). (13.1)

The regret of FTL can be linear in some cases.

Example 13.1.1 ConsiderK ∈ [−1, 1], f1(x) = 1
2x, f2(x) = −x, f3(x) = x, f4(x) = −x, f5(x) = x, · · · , f2n =

−x, f2n+1 = x.
Thus

t∑
τ=1

fτ (x) =

{
− 1

2x if t is even;
1
2x if t is odd.

FTL will output 0,-1,1,-1,1,· · · , then

regretT ≤ 0 + 1 + 1 + 1 + · · · −
T∑
t=1

ft(0) = T − 1 = O(T ) (13.2)

In order to induce stability, FTL can be modified by either randomization or regularization. By adding a
regularization term, we can obtain the RFTL (Regularized Follow the Leader) algorithm.

13.2 Regularized Follow the Leader(RFTL) Algorithm

13.2.1 Regularization functions

Definition 13.1 Regularization function R(x): K7→ R.R(x) is twice differentiable, smooth and strong convex on K,
and usually non-negative.

Definition 13.2 The diameter of the set K relative to the function R is denoted as DR =
√

maxx,y∈K{R(x)−R(y)}

Definition 13.3 Dual norm: ‖y‖∗ = max‖x‖≤1〈x,y〉
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Definition 13.4 Matrix norm: ‖x‖A =
√

x>AX

Example 13.2.1 ‖x‖y = ‖x‖∇2R(y) =
√
x>∇2R(y)x, ‖x‖∗y = ‖x‖∇−2R(y) =

√
x>∇−2R(y)x

Definition 13.5 Bregman divergence: BR(x‖y) = R(x)−R(y)−∇R(y)>(x−y) = 1
2‖x−y‖2z, ∀z ∈ [x, y]

Example 13.2.2 BR(xt‖xt+1) = 1
2‖xt − xt+1‖2xt

Example 13.2.3 R(x) = 1
2‖x‖

2, BR(x‖t) = 1
2‖x− t‖

2

Example 13.2.4 R(x) =< x, logx >=
∑
i xilogxi, BR(x‖t) =

∑
i xilog

xi

yi
= KL(x‖y)

13.2.2 RFTL Algorithm

Algorithm 1 Regularized Follow the Leader(RFTL)

1: Input: y,R,K
2: Let x1 = arg min

x∈K
R(x)

3: for t = 1, 2, · · · , T do
4: Predict xt
5: Observe ∇t = ∇ft (xt)

6: Update xt+1 = arg min
x∈K

{
η
∑t
τ=1∇>τ x +R(x)

}
7: end for

Theorem 13.6 RFTL Algorithm attains for every u ∈ K the following bound on the regret:

regretT ≤ 2η

T∑
t=1

‖∇t‖∗2t +
R(u)−R (x1)

η
. (13.3)

If we know the upper bound on the local norms such as ‖∇t‖∗t ≤ GR, we can obtain the bound on the regret:

regretT ≤ 2DRGR
√

2T (13.4)

Lemma 13.7 ∀u ∈ K, RFTL algorithm guarantees the following regret bound:

regretT ≤
T∑
t=1

∇>t xt −
T∑
t=1

∇>t xt+1 +
1

η
D2
R (13.5)

Proof:
∵ Define g0(x) = 1

ηR(x), gt(x) = ∇>t x

∴ regretT =
∑T
t=1(gt(xt)− gt(u)),∀u ∈ K

∵
∑T
t=1(gt(xt)−gt(u)) =

∑T
t=1(gt(xt)−gt(xt+1)+gt(xt+1)−gt(u)) =

∑T
t=1(gt(xt)−gt(xt+1))+

∑T
t=0(gt(xt+1)−

gt(u))− g0(x1) + g0(u)

∵
∑T
t=0(gt(xt+1)− gt(u)) ≤ 0 and −g0(x1) + g0(u) ≤ 1

ηD
2
R

∴ regretT =
∑T
t=1(gt(xt)− gt(u)) ≤

∑T
t=1(gt(xt)− gt(xt+1)) + 1

ηD
2
R =

∑T
t=1(∇>t xt −∇>t xt+1)) + 1

ηD
2
R


