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Last time: convex sets and functions

“Convex calculus” makes it easy to check convexity. Tools:

• Definitions of convex sets and functions, classic examples
24 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form θ1x1 + · · · + θkxk, where θ1 + · · · + θk = 1 and
θi ≥ 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with θi the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {θ1x1 + · · · + θkxk | xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · · + θk = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ⊆
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose θ1, θ2, . . .

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn → R is convex if dom f is a convex set and if for all x,
y ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x ̸= y
and 0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is
strictly convex.

For an affine function we always have equality in (3.1), so all affine (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x ∈ dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.• Key properties (e.g., first- and second-order characterizations

for functions)

• Operations that preserve convexity (e.g., affine composition)

E.g., is max
{

log(1 + ea
T x), ‖Ax+ b‖51

}
convex?
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Outline

Today:

• Optimization terminology

• Properties and first-order optimality

• Equivalent transformations

• Hierarchies of Canonical Problems

• Many examples!
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Optimization terminology

Reminder: a convex optimization problem (or program) is

min
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, . . .m

Ax = b

where f and gi, i = 1, . . .m are all convex, and the optimization
domain is D = dom(f) ∩⋂m

i=1 dom(gi) (often we do not write D)

• f is called criterion or objective function

• gi is called inequality constraint function

• If x ∈ D, gi(x) ≤ 0, i = 1, . . .m, and Ax = b then x is called
a feasible point

• The minimum of f(x) over all feasible points x is called the
optimal value, written f?
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• If x is feasible and f(x) = f?, then x is called optimal; also
called a solution, or a minimizer1

• If x is feasible and f(x) ≤ f?+ ε, then x is called ε-suboptimal

• If x is feasible and gi(x) = 0, then we say gi is active at x

• Convex minimization can be reposed as concave maximization

min
x

f(x)

subject to gi(x) ≤ 0,

i = 1, . . .m

Ax = b

⇐⇒

max
x

− f(x)

subject to gi(x) ≤ 0,

i = 1, . . .m

Ax = b

Both are called convex optimization problems

1Note: a convex optimization problem need not have solutions, i.e., need
not attain its minimum, but we will not be careful about this
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Solution set

Let Xopt be the set of all solutions of convex problem, written

Xopt = argmin f(x)

subject to gi(x) ≤ 0, i = 1, . . .m

Ax = b

Key property: Xopt is a convex set

Proof: use definitions. If x, y are solutions, then for 0 ≤ t ≤ 1,

• gi(tx+ (1− t)y) ≤ tgi(x) + (1− t)gi(y) ≤ 0

• A(tx+ (1− t)y) = tAx+ (1− t)Ay = b

• f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) = f?

Therefore tx+ (1− t)y is also a solution

Another key property: if f is strictly convex, then the solution is
unique, i.e., Xopt contains one element
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Example: lasso

Given y ∈ Rn, X ∈ Rn×p, consider the lasso problem:

min
β

‖y −Xβ‖22
subject to ‖β‖1 ≤ s

Is this convex? What is the criterion function? The inequality and
equality constraints? Feasible set? Is the solution unique, when:

• n ≥ p and X has full column rank?

• p > n (“high-dimensional” case)?

How do our answers change if we changed criterion to Huber loss:

n∑
i=1

ρ(yi − xTi β), ρ(z) =

{
1
2z

2 |z| ≤ δ
δ|z| − 1

2δ
2 else

?

7



Example: support vector machines

Given y ∈ {−1, 1}n, X ∈ Rn×p with rows x1, . . . xn, consider the
support vector machine or SVM problem:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

subject to ξi ≥ 0, i = 1, . . . n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . n

Is this convex? What is the criterion, constraints, feasible set? Is
the solution (β, β0, ξ) unique? What if changed the criterion to

1

2
‖β‖22 +

1

2
β20 + C

n∑
i=1

ξ1.01i ?

For original criterion, what about β component, at the solution?
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Local minima are global minima

For a convex problem, a feasible point x is called locally optimal is
there is some R > 0 such that

f(x) ≤ f(y) for all feasible y such that ‖x− y‖2 ≤ R

Reminder: for convex optimization problems, local optima are
global optima

Proof simply follows
from definitions

●

●

●

●

●

●

●

●

●

●

Convex Nonconvex
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Rewriting constraints

The optimization problem

min
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . .m

Ax = b

can be rewritten as

min
x

f(x) subject to x ∈ C

where C = {x : gi(x) ≤ 0, i = 1, . . .m, Ax = b}, the feasible set.
Hence the latter formulation is completely general

With IC the indicator of C, we can write this in unconstrained form

min
x

f(x) + IC(x)
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First-order optimality condition

For a convex problem

min
x

f(x) subject to x ∈ C

and differentiable f , a feasible point x is optimal if and only if

∇f(x)T (y − x) ≥ 0 for all y ∈ C

This is called the first-order condition
for optimality

In words: all feasible directions from x
are aligned with gradient ∇f(x)

Important special case: if C = Rn (unconstrained optimization),
then optimality condition reduces to familiar ∇f(x) = 0
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Example: quadratic minimization

Consider minimizing the quadratic function

f(x) =
1

2
xTQx+ bTx+ c

where Q � 0. The first-order condition says that solution satisfies

∇f(x) = Qx+ b = 0

• if Q � 0, then there is a unique solution x = −Q−1b
• if Q is singular and b /∈ col(Q), then there is no solution (i.e.,

minx f(x) = −∞)

• if Q is singular and b ∈ col(Q), then there are infinitely many
solutions

x = −Q+b+ z, z ∈ null(Q)

where Q+ is the pseudoinverse of Q
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Example: equality-constrained minimization

Consider the equality-constrained convex problem:

min
x

f(x) subject to Ax = b

with f differentiable. Let’s prove Lagrange multiplier optimality
condition

∇f(x) +ATu = 0 for some u

According to first-order optimality, solution x satisfies Ax = b and

∇f(x)T (y − x) ≥ 0 for all y such that Ay = b

This is equivalent to

∇f(x)T v = 0 for all v ∈ null(A)

Result follows because null(A)⊥ = row(A)
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Example: projection onto a convex set

Consider projection onto convex set C:

min
x
‖a− x‖22 subject to x ∈ C

First-order optimality condition says that the solution x satisfies

∇f(x)T (y − x) = (x− a)T (y − x) ≥ 0 for all y ∈ C

Equivalently, this says that

a− x ∈ NC(x)

where recall NC(x) is the normal
cone to C at x

●

●

●

●
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Partial optimization

Reminder: g(x) = miny∈C f(x, y) is convex in x, provided that f
is convex in (x, y) and C is a convex set

Therefore we can always partially optimize a convex problem and
retain convexity

E.g., if we decompose x = (x1, x2) ∈ Rn1+n2 , then

min
x1,x2

f(x1, x2)

subject to g1(x1) ≤ 0

g2(x2) ≤ 0

⇐⇒
min
x1

f̃(x1)

subject to g1(x1) ≤ 0

where f̃(x1) = min{f(x1, x2) : g2(x2) ≤ 0}. The right problem is
convex if the left problem is
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Example: hinge form of SVMs

Recall the SVM problem

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

subject to ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . n

Rewrite the constraints as ξi ≥ max{0, 1− yi(xTi β + β0)}. Indeed
we can argue that we have = at solution

Therefore plugging in for optimal ξ gives the hinge form of SVMs:

min
β,β0

1

2
‖β‖22 + C

n∑
i=1

[
1− yi(xTi β + β0)

]
+

where a+ = max{0, a} is called the hinge function
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Transformations and change of variables

If h : R→ R is a monotone increasing transformation, then

min
x

f(x) subject to x ∈ C
⇐⇒ min

x
h(f(x)) subject to x ∈ C

Similarly, inequality or equality constraints can be transformed and
yield equivalent optimization problems. Can use this to reveal the
“hidden convexity” of a problem

If φ : Rn → Rm is one-to-one, and its image covers feasible set C,
then we can change variables in an optimization problem:

min
x

f(x) subject to x ∈ C
⇐⇒ min

y
f(φ(y)) subject to φ(y) ∈ C
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Example: geometric programming

A monomial is a function f : Rn++ → R of the form

f(x) = γxa11 x
a2
2 · · ·xann

for γ > 0, a1, . . . an ∈ R. A posynomial is a sum of monomials,

f(x) =

p∑
k=1

γkx
ak1
1 xak22 · · ·xaknn

A geometric program is of the form

min
x

f(x)

subject to gi(x) ≤ 1, i = 1, . . .m

hj(x) = 1, j = 1, . . . r

where f , gi, i = 1, . . .m are posynomials and hj , j = 1, . . . r are
monomials. This is nonconvex
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Given f(x) = γxa11 x
a2
2 · · ·xann , let yi = log xi and rewrite this as

γ(ey1)a1(ey2)a2 · · · (eyn)an = ea
T y+b

for b = log γ. Also, a posynomial can be written as
∑p

k=1 e
aTk y+bk .

With this variable substitution, and after taking logs, a geometric
program is equivalent to

min
x

log

(
p0∑
k=1

ea
T
0ky+b0k

)

subject to log

(
pi∑
k=1

ea
T
iky+bik

)
≤ 0, i = 1, . . .m

cTj y + dj = 0, j = 1, . . . r

This is convex, recalling the convexity of soft max functions
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Several interesting problems are geometric programs, e.g., floor
planning:8.8 Floor planning 439

W

H

hi

wi

(xi, yi)

Ci

Figure 8.18 Floor planning problem. Non-overlapping rectangular cells are
placed in a rectangle with width W , height H, and lower left corner at (0, 0).
The ith cell is specified by its width wi, height hi, and the coordinates of its
lower left corner, (xi, yi).

We also require that the cells do not overlap, except possibly on their boundaries:

int (Ci ∩ Cj) = ∅ for i ̸= j.

(It is also possible to require a positive minimum clearance between the cells.) The
non-overlap constraint int(Ci ∩ Cj) = ∅ holds if and only if for i ̸= j,

Ci is left of Cj , or Ci is right of Cj , or Ci is below Cj , or Ci is above Cj .

These four geometric conditions correspond to the inequalities

xi + wi ≤ xj , or xj + wj ≤ xi, or yi + hj ≤ yj , or yj + hi ≤ yi, (8.32)

at least one of which must hold for each i ̸= j. Note the combinatorial nature of
these constraints: for each pair i ̸= j, at least one of the four inequalities above
must hold.

8.8.1 Relative positioning constraints

The idea of relative positioning constraints is to specify, for each pair of cells,
one of the four possible relative positioning conditions, i.e., left, right, above, or
below. One simple method to specify these constraints is to give two relations on
{1, . . . , N}: L (meaning ‘left of’) and B (meaning ‘below’). We then impose the
constraint that Ci is to the left of Cj if (i, j) ∈ L, and Ci is below Cj if (i, j) ∈ B.
This yields the constraints

xi + wi ≤ xj for (i, j) ∈ L, yi + hi ≤ yj for (i, j) ∈ B, (8.33)

See Boyd et al. (2007), “A tutorial on geometric programming”,
and also Chapter 8.8 of B & V book
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Eliminating equality constraints

Important special case of change of variables: eliminating equality
constraints. Given the problem

min
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . .m

Ax = b

we can always express any feasible point as x = My + x0, where
Ax0 = b and col(M) = null(A). Hence the above is equivalent to

min
y

f(My + x0)

subject to gi(My + x0) ≤ 0, i = 1, . . .m

Note: this is fully general but not always a good idea (practically)
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Introducing slack variables

Essentially opposite to eliminating equality contraints: introducing
slack variables. Given the problem

min
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . .m

Ax = b

we can transform the inequality constraints via

min
x,s

f(x)

subject to si ≥ 0, i = 1, . . .m

gi(x) + si = 0, i = 1, . . .m

Ax = b

Note: this is no longer convex unless gi, i = 1, . . . , n are affine
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Relaxing nonaffine equalities

Given an optimization problem

min
x

f(x) subject to x ∈ C

we can always take an enlarged constraint set C̃ ⊇ C and consider

min
x

f(x) subject to x ∈ C̃

This is called a relaxation and its optimal value is always smaller or
equal to that of the original problem

Important special case: relaxing nonaffine equality constraints, i.e.,

hj(x) = 0, j = 1, . . . r

where hj , j = 1, . . . r are convex but nonaffine, are replaced with

hj(x) ≤ 0, j = 1, . . . r
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Example: maximum utility problem

The maximum utility problem models investment/consumption:

max
x,b

T∑
t=1

αtu(xt)

subject to bt+1 = bt + f(bt)− xt, t = 1, . . . T

0 ≤ xt ≤ bt, t = 1, . . . T

Here bt is the budget and xt is the amount consumed at time t; f
is an investment return function, u utility function, both concave
and increasing

Is this a convex problem? What if we replace equality constraints
with inequalities:

bt+1 ≤ bt + f(bt)− xt, t = 1, . . . T?
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Example: principal components analysis

Given X ∈ Rn×p, consider the low rank approximation problem:

min
R
‖X −R‖2F subject to rank(R) = k

Here ‖A‖2F =
∑n

i=1

∑p
j=1A

2
ij , the entrywise squared `2 norm, and

rank(A) denotes the rank of A

Also called principal components analysis or PCA problem. Given
X = UDV T , singular value decomposition or SVD, the solution is

R = UkDkV
T
k

where Uk, Vk are the first k columns of U, V and Dk is the first k
diagonal elements of D. I.e., R is reconstruction of X from its first
k principal components
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The PCA problem is not convex. Let’s recast it. First rewrite as

min
Z∈Sp

‖X −XZ‖2F subject to rank(Z) = k, Z is a projection

⇐⇒ max
Z∈Sp

tr(SZ) subject to rank(Z) = k, Z is a projection

where S = XTX. Hence constraint set is the nonconvex set

C =
{
Z ∈ Sp : λi(Z) ∈ {0, 1}, i = 1, . . . p, tr(Z) = k}

where λi(Z), i = 1, . . . n are the eigenvalues of Z. Solution in this
formulation is

Z = VkV
T
k

where Vk gives first k columns of V
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Now consider relaxing constraint set to Fk = conv(C), its convex
hull. Note

Fk = {Z ∈ Sp : λi(Z) ∈ [0, 1], i = 1, . . . p, tr(Z) = k}
= {Z ∈ Sp : 0 � Z � I, tr(Z) = k}

This set is called the Fantope of order k. It is convex. Hence, the
linear maximization over the Fantope, namely

max
Z∈Fk

tr(SZ)

is a convex problem. Remarkably, this is equivalent to the original
nonconvex PCA problem (admits the same solution)!

(Famous result: Fan (1949), “On a theorem of Weyl conerning
eigenvalues of linear transformations”)
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Sparse PCA with Fantope Projection and Selection

• Having an optimization formulation allows us to add
additional problem specific considerations.

• Suppose we want the recovered principle components to be
sparse

max
Z∈Fk

tr(SZ)− λ
∑
i,j

|Zi,j | subject to rank(R) = k

• This is the algorithm for the sparse PCA problem that
achieves the minimax rate. (Vu and Lei, NIPS 2013).

28



Approximation Algorithm for MaxCut

• Given a graph with nodes and edges and edge weights. Find a
subset S of the nodes such that the sum of the weights wij of
the edges between S and its complement S̄ is maximizes.

• Let xj = 1 if j ∈ S and xj = −1 if j ∈ S̄.

max
x

1

4

n∑
i=1

n∑
j=1

wij(1− xixj)

s.t. xj ∈ {−1, 1}, j = 1, ..., n

• Goemans and Williamson algorithm:

1. Convex relaxation: solve an SDP instead.
2. Randomized rounding.

• You get a 0.87856 approximation of an NP-complete problem.
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Approximation Algorithm for MaxCut
Reformulation (without changing the problem):

max
Y ∈Rn×n,x∈Rn

n∑
i=1

n∑
j=1

wij(1− Yi,j)

s.t. Yi,i = 1 ∀j = 1, ..., n

Y = xxT .

The convex relaxation:

max
Y ∈Rn×n

n∑
i=1

n∑
j=1

wij(1− Yi,j)

s.t. Yi,i = 1 ∀j = 1, ..., n

Y � 0.

Goemans and Williamson: Sample v uniformly from the unit
sphere in Rn, output sign(Y v).
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Quick Summary

• Optimization terminology (e.g., criterion, constraints, feasible
points, solutions)

• Properties and first-order optimality

• Equivalent transformations (e.g., partial optimization, change
of variables, eliminating equality constraints)
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Hierarchy of Canonical Optimizations

• Linear programs

• Quadratic programs

• Semidefinite programs

• Cone programs
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Linear program

A linear program or LP is an optimization problem of the form

min
x

cTx

subject to Dx ≤ d
Ax = b

Observe that this is always a convex optimization problem

• First introduced by Kantorovich in the late 1930s and Dantzig
in the 1940s

• Dantzig’s simplex algorithm gives a direct (noniterative) solver
for LPs (later in the course we’ll see interior point methods)

• Fundamental problem in convex optimization. Many diverse
applications, rich history
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Example: diet problem

Find cheapest combination of foods that satisfies some nutritional
requirements (useful for graduate students!)

min
x

cTx

subject to Dx ≥ d
x ≥ 0

Interpretation:

• cj : per-unit cost of food j

• di : minimum required intake of nutrient i

• Dij : content of nutrient i per unit of food j

• xj : units of food j in the diet
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Example: transportation problem

Ship commodities from given sources to destinations at min cost

min
x

m∑
i=1

n∑
j=1

cijxij

subject to

n∑
j=1

xij ≤ si, i = 1, . . . ,m

m∑
i=1

xij ≥ dj , j = 1, . . . , n, x ≥ 0

Interpretation:

• si : supply at source i

• dj : demand at destination j

• cij : per-unit shipping cost from i to j

• xij : units shipped from i to j
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Example: basis pursuit

Given y ∈ Rn and X ∈ Rn×p, where p > n. Suppose that we seek
the sparsest solution to underdetermined linear system Xβ = y

Nonconvex formulation:

min
β

‖β‖0

subject to Xβ = y

where recall ‖β‖0 =
∑p

j=1 1{βj 6= 0}, the `0 “norm”

The `1 approximation, often called basis pursuit:

min
β

‖β‖1

subject to Xβ = y
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Basis pursuit is a linear program. Reformulation:

min
β

‖β‖1

subject to Xβ = y

⇐⇒
min
β,z

1T z

subject to z ≥ β
z ≥ −β
Xβ = y

(Check that this makes sense to you)
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Example: Dantzig selector

Modification of previous problem, where we allow for Xβ ≈ y (we
don’t require exact equality), the Dantzig selector:2

min
β

‖β‖1

subject to ‖XT (y −Xβ)‖∞ ≤ λ

Here λ ≥ 0 is a tuning parameter

Again, this can be reformulated as a linear program (check this!)

2Candes and Tao (2007), “The Dantzig selector: statistical estimation when
p is much larger than n”
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Standard form

A linear program is said to be in standard form when it is written as

min
x

cTx

subject to Ax = b

x ≥ 0

Any linear program can be rewritten in standard form (check this!)
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Convex quadratic program

A convex quadratic program or QP is an optimization problem of
the form

min
x

cTx+
1

2
xTQx

subject to Dx ≤ d
Ax = b

where Q � 0, i.e., positive semidefinite

Note that this problem is not convex when Q 6� 0

From now on, when we say quadratic program or QP, we implicitly
assume that Q � 0 (so the problem is convex)
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Example: portfolio optimization

Construct a financial portfolio, trading off performance and risk:

max
x

µTx− γ

2
xTQx

subject to 1Tx = 1

x ≥ 0

Interpretation:

• µ : expected assets’ returns

• Q : covariance matrix of assets’ returns

• γ : risk aversion

• x : portfolio holdings (percentages)
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Example: support vector machines

Given y ∈ {−1, 1}n, X ∈ Rn×p having rows x1, . . . xn, recall the
support vector machine or SVM problem:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

subject to ξi ≥ 0, i = 1, . . . n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . n

This is a quadratic program
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Example: lasso

Given y ∈ Rn, X ∈ Rn×p, recall the lasso problem:

min
β

‖y −Xβ‖22
subject to ‖β‖1 ≤ s

Here s ≥ 0 is a tuning parameter. Indeed, this can be reformulated
as a quadratic program (check this!)

Alternative parametrization (called Lagrange, or penalized form):

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

Now λ ≥ 0 is a tuning parameter. And again, this can be rewritten
as a quadratic program (check this!)
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Standard form

A quadratic program is in standard form if it is written as

min
x

cTx+
1

2
xTQx

subject to Ax = b

x ≥ 0

Any quadratic program can be rewritten in standard form
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Motivation for semidefinite programs

Consider linear programming again:

min
x

cTx

subject to Dx ≤ d
Ax = b

Can generalize by changing ≤ to different (partial) order. Recall:

• Sn is space of n× n symmetric matrices

• Sn+ is the space of positive semidefinite matrices, i.e.,

Sn+ = {X ∈ Sn : uTXu ≥ 0 for all u ∈ Rn}

• Sn++ is the space of positive definite matrices, i.e.,

Sn++ =
{
X ∈ Sn : uTXu > 0 for all u ∈ Rn \ {0}

}
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Facts about Sn, Sn+, Sn++

• Basic linear algebra facts, here λ(X) = (λ1(X), . . . , λn(X)):

X ∈ Sn =⇒ λ(X) ∈ Rn

X ∈ Sn+ ⇐⇒ λ(X) ∈ Rn+
X ∈ Sn++ ⇐⇒ λ(X) ∈ Rn++

• We can define an inner product over Sn: given X,Y ∈ Sn,

X • Y = tr(XY )

• We can define a partial ordering over Sn: given X,Y ∈ Sn,

X � Y ⇐⇒ X − Y ∈ Sn+

Note: for x, y ∈ Rn, diag(x) � diag(y) ⇐⇒ x ≥ y (recall,
the latter is interpreted elementwise)
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Semidefinite program

A semidefinite program or SDP is an optimization problem of the
form

min
x

cTx

subject to x1F1 + . . .+ xnFn � F0

Ax = b

Here Fj ∈ Sd, for j = 0, 1, . . . n, and A ∈ Rm×n, c ∈ Rn, b ∈ Rm.
Observe that this is always a convex optimization problem

Also, any linear program is a semidefinite program (check this!)
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Standard form

A semidefinite program is in standard form if it is written as

min
X

C •X

subject to Ai •X = bi, i = 1, . . .m

X � 0

Any semidefinite program can be written in standard form (for a
challenge, check this!)
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Example: theta function

Let G = (N,E) be an undirected graph, N = {1, . . . , n}, and

• ω(G) : clique number of G

• χ(G) : chromatic number of G

The Lovasz theta function:3

ϑ(G) = max
X

11T •X

subject to I •X = 1

Xij = 0, (i, j) /∈ E
X � 0

The Lovasz sandwich theorem: ω(G) ≤ ϑ(Ḡ) ≤ χ(G), where Ḡ is
the complement graph of G

3Lovasz (1979), “On the Shannon capacity of a graph”
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Example: trace norm minimization

Let A : Rm×n → Rp be a linear map,

A(X) =

 A1 •X
. . .

Ap •X


for A1, . . . Ap ∈ Rm×n (and where Ai •X = tr(ATi X)). Finding
lowest-rank solution to an underdetermined system, nonconvex:

min
X

rank(X)

subject to A(X) = b

Trace norm approximation:

min
X

‖X‖tr
subject to A(X) = b

This is indeed an SDP (but harder to show, requires duality ...)
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Conic program

A conic program is an optimization problem of the form:

min
x

cTx

subject to Ax = b

D(x) + d ∈ K

Here:

• c, x ∈ Rn, and A ∈ Rm×n, b ∈ Rm

• D : Rn → Y is a linear map, d ∈ Y , for Euclidean space Y

• K ⊆ Y is a closed convex cone

Both LPs and SDPs are special cases of conic programming. For
LPs, K = Rn+; for SDPs, K = Sn+
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Second-order cone program

A second-order cone program or SOCP is an optimization problem
of the form:

min
x

cTx

subject to ‖Dix+ di‖2 ≤ eTi x+ fi, i = 1, . . . p

Ax = b

This is indeed a cone program. Why? Recall the second-order cone

Q = {(x, t) : ‖x‖2 ≤ t}
So we have

‖Dix+ di‖2 ≤ eTi x+ fi ⇐⇒ (Dix+ di, e
T
i x+ fi) ∈ Qi

for second-order cone Qi of appropriate dimensions. Now take
K = Q1 × . . .×Qp
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Observe that every LP is an SOCP. Further, every SOCP is an SDP

Why? Turns out that

‖x‖2 ≤ t ⇐⇒
[
tI x
xT t

]
� 0

Hence we can write any SOCP constraint as an SDP constraint

The above is a special case of the Schur complement theorem:[
A B
BT C

]
� 0 ⇐⇒ A−BC−1BT � 0

for A,C symmetric and C � 0
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Hey, what about QPs?

Finally, our old friend QPs “sneak” into the hierarchy. Turns out
QPs are SOCPs, which we can see by rewriting a QP as

min
x,t

cTx+ t

subject to Dx ≤ d, 1

2
xTQx ≤ t

Ax = b

Now write 1
2x

TQx ≤ t ⇐⇒ ‖( 1√
2
Q1/2x, 12(1− t))‖2 ≤ 1

2(1 + t)

Take a breath (phew!). Thus we have established the hierachy

LPs ⊆ QPs ⊆ SOCPs ⊆ SDPs ⊆ Conic programs

completing the picture we saw at the start
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