Convex Optimization Basics

Yu-Xiang Wang
CS292A

(Based on Ryan Tibshirani's 10-725)

Last time: convex sets and functions

"Convex calculus" makes it easy to check convexity. Tools:

- Definitions of convex sets and functions, classic examples

- Key properties (e.g., first- and second-order characterizations for functions)
- Operations that preserve convexity (e.g., affine composition)
E.g., is $\max \left\{\log \left(1+e^{a^{T} x}\right),\|A x+b\|_{1}^{5}\right\}$ convex?

Outline

Today:

- Optimization terminology
- Properties and first-order optimality
- Equivalent transformations
- Hierarchies of Canonical Problems
- Many examples!

Optimization terminology

Reminder: a convex optimization problem (or program) is

$$
\begin{array}{ll}
\min _{x \in D} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots m \\
& A x=b
\end{array}
$$

where f and $g_{i}, i=1, \ldots m$ are all convex, and the optimization domain is $D=\operatorname{dom}(f) \cap \bigcap_{i=1}^{m} \operatorname{dom}\left(g_{i}\right)$ (often we do not write D)

- f is called criterion or objective function
- g_{i} is called inequality constraint function
- If $x \in D, g_{i}(x) \leq 0, i=1, \ldots m$, and $A x=b$ then x is called a feasible point
- The minimum of $f(x)$ over all feasible points x is called the optimal value, written f^{\star}
- If x is feasible and $f(x)=f^{\star}$, then x is called optimal; also called a solution, or a minimizer ${ }^{1}$
- If x is feasible and $f(x) \leq f^{\star}+\epsilon$, then x is called ϵ-suboptimal
- If x is feasible and $g_{i}(x)=0$, then we say g_{i} is active at x
- Convex minimization can be reposed as concave maximization

$\min _{x}$	$f(x)$		
subject to	$g_{i}(x) \leq 0$,		
$i=1, \ldots m$			
		$\max _{x}$	$-f(x)$
			subject to
		$g_{i}(x) \leq 0$,	
	$i=1, \ldots m$		
		$A x=b$	

Both are called convex optimization problems

[^0]
Solution set

Let $X_{\text {opt }}$ be the set of all solutions of convex problem, written

$$
\begin{array}{rll}
X_{\mathrm{opt}}= & \operatorname{argmin} & f(x) \\
& \text { subject to } & g_{i}(x) \leq 0, i=1, \ldots m \\
& A x=b
\end{array}
$$

Key property: $X_{\text {opt }}$ is a convex set
Proof: use definitions. If x, y are solutions, then for $0 \leq t \leq 1$,

- $g_{i}(t x+(1-t) y) \leq t g_{i}(x)+(1-t) g_{i}(y) \leq 0$
- $A(t x+(1-t) y)=t A x+(1-t) A y=b$
- $f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)=f^{\star}$

Therefore $t x+(1-t) y$ is also a solution
Another key property: if f is strictly convex, then the solution is unique, i.e., $X_{\text {opt }}$ contains one element

Example: lasso

Given $y \in \mathbb{R}^{n}, X \in \mathbb{R}^{n \times p}$, consider the lasso problem:

$$
\begin{array}{ll}
\min _{\beta} & \|y-X \beta\|_{2}^{2} \\
\text { subject to } & \|\beta\|_{1} \leq s
\end{array}
$$

Is this convex? What is the criterion function? The inequality and equality constraints? Feasible set? Is the solution unique, when:

- $n \geq p$ and X has full column rank?
- $p>n$ ("high-dimensional" case)?

How do our answers change if we changed criterion to Huber loss:

$$
\sum_{i=1}^{n} \rho\left(y_{i}-x_{i}^{T} \beta\right), \quad \rho(z)=\left\{\begin{array}{ll}
\frac{1}{2} z^{2} & |z| \leq \delta \\
\delta|z|-\frac{1}{2} \delta^{2} & \text { else }
\end{array} ?\right.
$$

Example: support vector machines

Given $y \in\{-1,1\}^{n}, X \in \mathbb{R}^{n \times p}$ with rows $x_{1}, \ldots x_{n}$, consider the support vector machine or SVM problem:

$$
\begin{array}{ll}
\min _{\beta, \beta_{0}, \xi} & \frac{1}{2}\|\beta\|_{2}^{2}+C \sum_{i=1}^{n} \xi_{i} \\
\text { subject to } & \xi_{i} \geq 0, i=1, \ldots n \\
& y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq 1-\xi_{i}, i=1, \ldots n
\end{array}
$$

Is this convex? What is the criterion, constraints, feasible set? Is the solution $\left(\beta, \beta_{0}, \xi\right)$ unique? What if changed the criterion to

$$
\frac{1}{2}\|\beta\|_{2}^{2}+\frac{1}{2} \beta_{0}^{2}+C \sum_{i=1}^{n} \xi_{i}^{1.01} ?
$$

For original criterion, what about β component, at the solution?

Local minima are global minima

For a convex problem, a feasible point x is called locally optimal is there is some $R>0$ such that

$$
f(x) \leq f(y) \text { for all feasible } y \text { such that }\|x-y\|_{2} \leq R
$$

Reminder: for convex optimization problems, local optima are global optima

Convex

Nonconvex

Rewriting constraints

The optimization problem

$$
\begin{array}{ll}
\min _{x} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots m \\
& A x=b
\end{array}
$$

can be rewritten as

$$
\min _{x} f(x) \text { subject to } x \in C
$$

where $C=\left\{x: g_{i}(x) \leq 0, i=1, \ldots m, A x=b\right\}$, the feasible set. Hence the latter formulation is completely general

With I_{C} the indicator of C, we can write this in unconstrained form

$$
\min _{x} f(x)+I_{C}(x)
$$

First-order optimality condition

For a convex problem

$$
\min _{x} f(x) \text { subject to } x \in C
$$

and differentiable f, a feasible point x is optimal if and only if

$$
\nabla f(x)^{T}(y-x) \geq 0 \quad \text { for all } y \in C
$$

This is called the first-order condition for optimality

In words: all feasible directions from x are aligned with gradient $\nabla f(x)$

Important special case: if $C=\mathbb{R}^{n}$ (unconstrained optimization), then optimality condition reduces to familiar $\nabla f(x)=0$

Example: quadratic minimization

Consider minimizing the quadratic function

$$
f(x)=\frac{1}{2} x^{T} Q x+b^{T} x+c
$$

where $Q \succeq 0$. The first-order condition says that solution satisfies

$$
\nabla f(x)=Q x+b=0
$$

- if $Q \succ 0$, then there is a unique solution $x=-Q^{-1} b$
- if Q is singular and $b \notin \operatorname{col}(Q)$, then there is no solution (i.e., $\left.\min _{x} f(x)=-\infty\right)$
- if Q is singular and $b \in \operatorname{col}(Q)$, then there are infinitely many solutions

$$
x=-Q^{+} b+z, \quad z \in \operatorname{null}(Q)
$$

where Q^{+}is the pseudoinverse of Q

Example: equality-constrained minimization

Consider the equality-constrained convex problem:

$$
\min _{x} f(x) \text { subject to } A x=b
$$

with f differentiable. Let's prove Lagrange multiplier optimality condition

$$
\nabla f(x)+A^{T} u=0 \quad \text { for some } u
$$

According to first-order optimality, solution x satisfies $A x=b$ and

$$
\nabla f(x)^{T}(y-x) \geq 0 \quad \text { for all } y \text { such that } A y=b
$$

This is equivalent to

$$
\nabla f(x)^{T} v=0 \quad \text { for all } v \in \operatorname{null}(A)
$$

Result follows because $\operatorname{null}(A)^{\perp}=\operatorname{row}(A)$

Example: projection onto a convex set

Consider projection onto convex set C :

$$
\min _{x}\|a-x\|_{2}^{2} \text { subject to } x \in C
$$

First-order optimality condition says that the solution x satisfies

$$
\nabla f(x)^{T}(y-x)=(x-a)^{T}(y-x) \geq 0 \quad \text { for all } y \in C
$$

Equivalently, this says that

$$
a-x \in \mathcal{N}_{C}(x)
$$

where recall $\mathcal{N}_{C}(x)$ is the normal cone to C at x

Partial optimization

Reminder: $g(x)=\min _{y \in C} f(x, y)$ is convex in x, provided that f is convex in (x, y) and C is a convex set

Therefore we can always partially optimize a convex problem and retain convexity
E.g., if we decompose $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{n_{1}+n_{2}}$, then

$$
\begin{array}{ll}
\min _{x_{1}, x_{2}} & f\left(x_{1}, x_{2}\right) \\
\text { subject to } & g_{1}\left(x_{1}\right) \leq 0 \\
& g_{2}\left(x_{2}\right) \leq 0
\end{array} \Longleftrightarrow \begin{array}{cll}
\min _{x_{1}} & \tilde{f}\left(x_{1}\right) \\
& \text { subject to } & g_{1}\left(x_{1}\right) \leq 0 \\
& &
\end{array}
$$

where $\tilde{f}\left(x_{1}\right)=\min \left\{f\left(x_{1}, x_{2}\right): g_{2}\left(x_{2}\right) \leq 0\right\}$. The right problem is convex if the left problem is

Example: hinge form of SVMs

Recall the SVM problem

$$
\begin{array}{ll}
\min _{\beta, \beta_{0}, \xi} & \frac{1}{2}\|\beta\|_{2}^{2}+C \sum_{i=1}^{n} \xi_{i} \\
\text { subject to } & \xi_{i} \geq 0, y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq 1-\xi_{i}, i=1, \ldots n
\end{array}
$$

Rewrite the constraints as $\xi_{i} \geq \max \left\{0,1-y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)\right\}$. Indeed we can argue that we have $=$ at solution

Therefore plugging in for optimal ξ gives the hinge form of SVMs:

$$
\min _{\beta, \beta_{0}} \frac{1}{2}\|\beta\|_{2}^{2}+C \sum_{i=1}^{n}\left[1-y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)\right]_{+}
$$

where $a_{+}=\max \{0, a\}$ is called the hinge function

Transformations and change of variables

If $h: \mathbb{R} \rightarrow \mathbb{R}$ is a monotone increasing transformation, then

$$
\begin{aligned}
& \min _{x} f(x) \text { subject to } x \in C \\
\Longleftrightarrow & \min _{x} h(f(x)) \text { subject to } x \in C
\end{aligned}
$$

Similarly, inequality or equality constraints can be transformed and yield equivalent optimization problems. Can use this to reveal the "hidden convexity" of a problem

If $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one, and its image covers feasible set C, then we can change variables in an optimization problem:

$$
\begin{aligned}
& \min _{x} f(x) \text { subject to } x \in C \\
\Longleftrightarrow & \min _{y} f(\phi(y)) \text { subject to } \phi(y) \in C
\end{aligned}
$$

Example: geometric programming

A monomial is a function $f: \mathbb{R}_{++}^{n} \rightarrow \mathbb{R}$ of the form

$$
f(x)=\gamma x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}
$$

for $\gamma>0, a_{1}, \ldots a_{n} \in \mathbb{R}$. A posynomial is a sum of monomials,

$$
f(x)=\sum_{k=1}^{p} \gamma_{k} x_{1}^{a_{k 1}} x_{2}^{a_{k 2}} \cdots x_{n}^{a_{k n}}
$$

A geometric program is of the form

$$
\begin{array}{ll}
\min _{x} & f(x) \\
\text { subject to } & g_{i}(x) \leq 1, i=1, \ldots m \\
& h_{j}(x)=1, j=1, \ldots r
\end{array}
$$

where $f, g_{i}, i=1, \ldots m$ are posynomials and $h_{j}, j=1, \ldots r$ are monomials. This is nonconvex

Given $f(x)=\gamma x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}$, let $y_{i}=\log x_{i}$ and rewrite this as

$$
\gamma\left(e^{y_{1}}\right)^{a_{1}}\left(e^{y_{2}}\right)^{a_{2}} \cdots\left(e^{y_{n}}\right)^{a_{n}}=e^{a^{T} y+b}
$$

for $b=\log \gamma$. Also, a posynomial can be written as $\sum_{k=1}^{p} e^{a_{k}^{T} y+b_{k}}$. With this variable substitution, and after taking logs, a geometric program is equivalent to

$$
\begin{array}{ll}
\min _{x} & \log \left(\sum_{k=1}^{p_{0}} e^{a_{0 k}^{T} y+b_{0 k}}\right) \\
\text { subject to } & \log \left(\sum_{k=1}^{p_{i}} e^{a_{i k}^{T} y+b_{i k}}\right) \leq 0, i=1, \ldots m \\
& c_{j}^{T} y+d_{j}=0, j=1, \ldots r
\end{array}
$$

This is convex, recalling the convexity of soft max functions

Several interesting problems are geometric programs, e.g., floor planning:

See Boyd et al. (2007), "A tutorial on geometric programming", and also Chapter 8.8 of B \& V book

Eliminating equality constraints

Important special case of change of variables: eliminating equality constraints. Given the problem

$$
\begin{array}{ll}
\min _{x} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots m \\
& A x=b
\end{array}
$$

we can always express any feasible point as $x=M y+x_{0}$, where $A x_{0}=b$ and $\operatorname{col}(M)=\operatorname{null}(A)$. Hence the above is equivalent to

$$
\begin{array}{ll}
\min _{y} & f\left(M y+x_{0}\right) \\
\text { subject to } & g_{i}\left(M y+x_{0}\right) \leq 0, i=1, \ldots m
\end{array}
$$

Note: this is fully general but not always a good idea (practically)

Introducing slack variables

Essentially opposite to eliminating equality contraints: introducing slack variables. Given the problem

$$
\begin{array}{ll}
\min _{x} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots m \\
& A x=b
\end{array}
$$

we can transform the inequality constraints via

$$
\begin{array}{ll}
\min _{x, s} & f(x) \\
\text { subject to } & s_{i} \geq 0, i=1, \ldots m \\
& g_{i}(x)+s_{i}=0, i=1, \ldots m \\
& A x=b
\end{array}
$$

Note: this is no longer convex unless $g_{i}, i=1, \ldots, n$ are affine

Relaxing nonaffine equalities

Given an optimization problem

$$
\min _{x} f(x) \text { subject to } x \in C
$$

we can always take an enlarged constraint set $\tilde{C} \supseteq C$ and consider

$$
\min _{x} f(x) \text { subject to } x \in \tilde{C}
$$

This is called a relaxation and its optimal value is always smaller or equal to that of the original problem

Important special case: relaxing nonaffine equality constraints, i.e.,

$$
h_{j}(x)=0, j=1, \ldots r
$$

where $h_{j}, j=1, \ldots r$ are convex but nonaffine, are replaced with

$$
h_{j}(x) \leq 0, j=1, \ldots r
$$

Example: maximum utility problem

The maximum utility problem models investment/consumption:

$$
\begin{array}{ll}
\max _{x, b} & \sum_{t=1}^{T} \alpha_{t} u\left(x_{t}\right) \\
\text { subject to } & b_{t+1}=b_{t}+f\left(b_{t}\right)-x_{t}, t=1, \ldots T \\
& 0 \leq x_{t} \leq b_{t}, t=1, \ldots T
\end{array}
$$

Here b_{t} is the budget and x_{t} is the amount consumed at time $t ; f$ is an investment return function, u utility function, both concave and increasing

Is this a convex problem? What if we replace equality constraints with inequalities:

$$
b_{t+1} \leq b_{t}+f\left(b_{t}\right)-x_{t}, t=1, \ldots T ?
$$

Example: principal components analysis

Given $X \in \mathbb{R}^{n \times p}$, consider the low rank approximation problem:

$$
\min _{R}\|X-R\|_{F}^{2} \quad \text { subject to } \operatorname{rank}(R)=k
$$

Here $\|A\|_{F}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{p} A_{i j}^{2}$, the entrywise squared ℓ_{2} norm, and $\operatorname{rank}(A)$ denotes the rank of A

Also called principal components analysis or PCA problem. Given $X=U D V^{T}$, singular value decomposition or SVD, the solution is

$$
R=U_{k} D_{k} V_{k}^{T}
$$

where U_{k}, V_{k} are the first k columns of U, V and D_{k} is the first k diagonal elements of D. I.e., R is reconstruction of X from its first k principal components

The PCA problem is not convex. Let's recast it. First rewrite as $\min _{Z \in \mathbb{S}^{\boldsymbol{p}}}\|X-X Z\|_{F}^{2}$ subject to $\operatorname{rank}(Z)=k, Z$ is a projection $\Longleftrightarrow \max _{Z \in \mathbb{S}^{p}} \operatorname{tr}(S Z)$ subject to $\operatorname{rank}(Z)=k, Z$ is a projection
where $S=X^{T} X$. Hence constraint set is the nonconvex set

$$
C=\left\{Z \in \mathbb{S}^{p}: \lambda_{i}(Z) \in\{0,1\}, i=1, \ldots p, \operatorname{tr}(Z)=k\right\}
$$

where $\lambda_{i}(Z), i=1, \ldots n$ are the eigenvalues of Z. Solution in this formulation is

$$
Z=V_{k} V_{k}^{T}
$$

where V_{k} gives first k columns of V

Now consider relaxing constraint set to $\mathcal{F}_{k}=\operatorname{conv}(C)$, its convex hull. Note

$$
\begin{aligned}
\mathcal{F}_{k} & =\left\{Z \in \mathbb{S}^{p}: \lambda_{i}(Z) \in[0,1], i=1, \ldots p, \operatorname{tr}(Z)=k\right\} \\
& =\left\{Z \in \mathbb{S}^{p}: 0 \preceq Z \preceq I, \operatorname{tr}(Z)=k\right\}
\end{aligned}
$$

This set is called the Fantope of order k. It is convex. Hence, the linear maximization over the Fantope, namely

$$
\max _{Z \in \mathcal{F}_{k}} \operatorname{tr}(S Z)
$$

is a convex problem. Remarkably, this is equivalent to the original nonconvex PCA problem (admits the same solution)!
(Famous result: Fan (1949), "On a theorem of Weyl conerning eigenvalues of linear transformations")

Sparse PCA with Fantope Projection and Selection

- Having an optimization formulation allows us to add additional problem specific considerations.
- Suppose we want the recovered principle components to be sparse

$$
\max _{Z \in \mathcal{F}_{k}} \operatorname{tr}(S Z)-\lambda \sum_{i, j}\left|Z_{i, j}\right| \text { subject to } \operatorname{rank}(R)=k
$$

- This is the algorithm for the sparse PCA problem that achieves the minimax rate. (Vu and Lei, NIPS 2013).

Approximation Algorithm for MaxCut

- Given a graph with nodes and edges and edge weights. Find a subset S of the nodes such that the sum of the weights $w_{i j}$ of the edges between S and its complement \bar{S} is maximizes.
- Let $x_{j}=1$ if $j \in S$ and $x_{j}=-1$ if $j \in \bar{S}$.

$$
\begin{array}{cl}
\max _{x} & \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(1-x_{i} x_{j}\right) \\
\text { s.t. } & x_{j} \in\{-1,1\}, j=1, \ldots, n
\end{array}
$$

- Goemans and Williamson algorithm:

1. Convex relaxation: solve an SDP instead.
2. Randomized rounding.

- You get a 0.87856 approximation of an NP-complete problem.

Approximation Algorithm for MaxCut

Reformulation (without changing the problem):

$$
\begin{aligned}
\max _{Y \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^{n}} & \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(1-Y_{i, j}\right) \\
\text { s.t. } & Y_{i, i}=1 \quad \forall j=1, \ldots, n \\
& Y=x x^{T} .
\end{aligned}
$$

The convex relaxation:

$$
\begin{aligned}
\max _{Y \in \mathbb{R}^{n \times n}} & \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(1-Y_{i, j}\right) \\
\text { s.t. } & Y_{i, i}=1 \quad \forall j=1, \ldots, n \\
& Y \succeq 0 .
\end{aligned}
$$

Goemans and Williamson: Sample v uniformly from the unit sphere in \mathbb{R}^{n}, output $\operatorname{sign}(Y v)$.

Quick Summary

- Optimization terminology (e.g., criterion, constraints, feasible points, solutions)
- Properties and first-order optimality

- Equivalent transformations (e.g., partial optimization, change of variables, eliminating equality constraints)

Hierarchy of Canonical Optimizations

- Linear programs
- Quadratic programs
- Semidefinite programs
- Cone programs

Linear program

A linear program or LP is an optimization problem of the form

$$
\begin{array}{ll}
\min _{x} & c^{T} x \\
\text { subject to } & D x \leq d \\
& A x=b
\end{array}
$$

Observe that this is always a convex optimization problem

- First introduced by Kantorovich in the late 1930s and Dantzig in the 1940s
- Dantzig's simplex algorithm gives a direct (noniterative) solver for LPs (later in the course we'll see interior point methods)
- Fundamental problem in convex optimization. Many diverse applications, rich history

Example: diet problem

Find cheapest combination of foods that satisfies some nutritional requirements (useful for graduate students!)

$$
\begin{array}{ll}
\min _{x} & c^{T} x \\
\text { subject to } & D x \geq d \\
& x \geq 0
\end{array}
$$

Interpretation:

- c_{j} : per-unit cost of food j
- d_{i} : minimum required intake of nutrient i
- $D_{i j}$: content of nutrient i per unit of food j
- x_{j} : units of food j in the diet

Example: transportation problem

Ship commodities from given sources to destinations at min cost

$$
\begin{array}{ll}
\min _{x} & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} \\
\text { subject to } & \sum_{j=1}^{n} x_{i j} \leq s_{i}, i=1, \ldots, m \\
& \sum_{i=1}^{m} x_{i j} \geq d_{j}, j=1, \ldots, n, \quad x \geq 0
\end{array}
$$

Interpretation:

- s_{i} : supply at source i
- d_{j} : demand at destination j
- $c_{i j}$: per-unit shipping cost from i to j
- $x_{i j}$: units shipped from i to j

Example: basis pursuit

Given $y \in \mathbb{R}^{n}$ and $X \in \mathbb{R}^{n \times p}$, where $p>n$. Suppose that we seek the sparsest solution to underdetermined linear system $X \beta=y$

Nonconvex formulation:

$\min _{\beta}$	$\\|\beta\\|_{0}$
subject to	$X \beta=y$

where recall $\|\beta\|_{0}=\sum_{j=1}^{p} 1\left\{\beta_{j} \neq 0\right\}$, the ℓ_{0} "norm"
The ℓ_{1} approximation, often called basis pursuit:

$$
\begin{array}{ll}
\min _{\beta} & \|\beta\|_{1} \\
\text { subject to } & X \beta=y
\end{array}
$$

Basis pursuit is a linear program. Reformulation:

| $\min _{\beta}$ | $\\|\beta\\|_{1}$ | | | |
|---|---|---|---|---|---|---|
| subject to | $X \beta=y$ | | $\min _{\beta, z}$ | $1^{T} z=$| subject to | $z \geq \beta$ |
| :--- | :--- |
| | |
| | |
| | |
| | |
| | |
| | |

(Check that this makes sense to you)

Example: Dantzig selector

Modification of previous problem, where we allow for $X \beta \approx y$ (we don't require exact equality), the Dantzig selector: ${ }^{2}$

$$
\begin{array}{ll}
\min _{\beta} & \|\beta\|_{1} \\
\text { subject to } & \left\|X^{T}(y-X \beta)\right\|_{\infty} \leq \lambda
\end{array}
$$

Here $\lambda \geq 0$ is a tuning parameter
Again, this can be reformulated as a linear program (check this!)

[^1]
Standard form

A linear program is said to be in standard form when it is written as

$$
\begin{array}{ll}
\min _{x} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

Any linear program can be rewritten in standard form (check this!)

Convex quadratic program

A convex quadratic program or QP is an optimization problem of the form

$$
\begin{array}{ll}
\min _{x} & c^{T} x+\frac{1}{2} x^{T} Q x \\
\text { subject to } & D x \leq d \\
& A x=b
\end{array}
$$

where $Q \succeq 0$, i.e., positive semidefinite
Note that this problem is not convex when $Q \nsucceq 0$
From now on, when we say quadratic program or QP, we implicitly assume that $Q \succeq 0$ (so the problem is convex)

Example: portfolio optimization

Construct a financial portfolio, trading off performance and risk:

$$
\begin{array}{ll}
\max _{x} & \mu^{T} x-\frac{\gamma}{2} x^{T} Q x \\
\text { subject to } & 1^{T} x=1 \\
& x \geq 0
\end{array}
$$

Interpretation:

- μ : expected assets' returns
- Q : covariance matrix of assets' returns
- γ : risk aversion
- x : portfolio holdings (percentages)

Example: support vector machines

Given $y \in\{-1,1\}^{n}, X \in \mathbb{R}^{n \times p}$ having rows $x_{1}, \ldots x_{n}$, recall the support vector machine or SVM problem:

$$
\begin{array}{ll}
\min _{\beta, \beta_{0}, \xi} & \frac{1}{2}\|\beta\|_{2}^{2}+C \sum_{i=1}^{n} \xi_{i} \\
\text { subject to } & \xi_{i} \geq 0, i=1, \ldots n \\
& y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq 1-\xi_{i}, i=1, \ldots n
\end{array}
$$

This is a quadratic program

Example: lasso

Given $y \in \mathbb{R}^{n}, X \in \mathbb{R}^{n \times p}$, recall the lasso problem:

$$
\begin{array}{ll}
\min _{\beta} & \|y-X \beta\|_{2}^{2} \\
\text { subject to } & \|\beta\|_{1} \leq s
\end{array}
$$

Here $s \geq 0$ is a tuning parameter. Indeed, this can be reformulated as a quadratic program (check this!)

Alternative parametrization (called Lagrange, or penalized form):

$$
\min _{\beta} \frac{1}{2}\|y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{1}
$$

Now $\lambda \geq 0$ is a tuning parameter. And again, this can be rewritten as a quadratic program (check this!)

Standard form

A quadratic program is in standard form if it is written as

$$
\begin{array}{ll}
\min _{x} & c^{T} x+\frac{1}{2} x^{T} Q x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

Any quadratic program can be rewritten in standard form

Motivation for semidefinite programs

Consider linear programming again:

$$
\begin{array}{ll}
\min _{x} & c^{T} x \\
\text { subject to } & D x \leq d \\
& A x=b
\end{array}
$$

Can generalize by changing \leq to different (partial) order. Recall:

- \mathbb{S}^{n} is space of $n \times n$ symmetric matrices
- \mathbb{S}_{+}^{n} is the space of positive semidefinite matrices, i.e.,

$$
\mathbb{S}_{+}^{n}=\left\{X \in \mathbb{S}^{n}: u^{T} X u \geq 0 \text { for all } u \in \mathbb{R}^{n}\right\}
$$

- \mathbb{S}_{++}^{n} is the space of positive definite matrices, i.e.,

$$
\mathbb{S}_{++}^{n}=\left\{X \in \mathbb{S}^{n}: u^{T} X u>0 \text { for all } u \in \mathbb{R}^{n} \backslash\{0\}\right\}
$$

Facts about $\mathbb{S}^{n}, \mathbb{S}_{+}^{n}, \mathbb{S}_{++}^{n}$

- Basic linear algebra facts, here $\lambda(X)=\left(\lambda_{1}(X), \ldots, \lambda_{n}(X)\right)$:

$$
\begin{aligned}
X \in \mathbb{S}^{n} & \Longleftrightarrow \lambda(X) \in \mathbb{R}^{n} \\
X \in \mathbb{S}_{+}^{n} & \Longleftrightarrow \lambda(X) \in \mathbb{R}_{+}^{n} \\
X \in \mathbb{S}_{++}^{n} & \Longleftrightarrow \lambda(X) \in \mathbb{R}_{++}^{n}
\end{aligned}
$$

- We can define an inner product over \mathbb{S}^{n} : given $X, Y \in \mathbb{S}^{n}$,

$$
X \bullet Y=\operatorname{tr}(X Y)
$$

- We can define a partial ordering over \mathbb{S}^{n} : given $X, Y \in \mathbb{S}^{n}$,

$$
X \succeq Y \Longleftrightarrow X-Y \in \mathbb{S}_{+}^{n}
$$

Note: for $x, y \in \mathbb{R}^{n}, \operatorname{diag}(x) \succeq \operatorname{diag}(y) \Longleftrightarrow x \geq y$ (recall, the latter is interpreted elementwise)

Semidefinite program

A semidefinite program or SDP is an optimization problem of the form

$$
\begin{array}{ll}
\min _{x} & c^{T} x \\
\text { subject to } & x_{1} F_{1}+\ldots+x_{n} F_{n} \preceq F_{0} \\
& A x=b
\end{array}
$$

Here $F_{j} \in \mathbb{S}^{d}$, for $j=0,1, \ldots n$, and $A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$. Observe that this is always a convex optimization problem

Also, any linear program is a semidefinite program (check this!)

Standard form

A semidefinite program is in standard form if it is written as

$$
\begin{array}{ll}
\min _{X} & C \bullet X \\
\text { subject to } & A_{i} \bullet X=b_{i}, i=1, \ldots m \\
& X \succeq 0
\end{array}
$$

Any semidefinite program can be written in standard form (for a challenge, check this!)

Example: theta function

Let $G=(N, E)$ be an undirected graph, $N=\{1, \ldots, n\}$, and

- $\omega(G)$: clique number of G
- $\chi(G)$: chromatic number of G

The Lovasz theta function: ${ }^{3}$

$$
\begin{aligned}
\vartheta(G)=\max _{X} & 11^{T} \bullet X \\
& \text { subject to } \\
& I \bullet X=1 \\
& X_{i j}=0,(i, j) \notin E \\
& X \succeq 0
\end{aligned}
$$

The Lovasz sandwich theorem: $\omega(G) \leq \vartheta(\bar{G}) \leq \chi(G)$, where \bar{G} is the complement graph of G
${ }^{3}$ Lovasz (1979), "On the Shannon capacity of a graph"

Example: trace norm minimization

Let $A: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p}$ be a linear map,

$$
A(X)=\left(\begin{array}{c}
A_{1} \bullet X \\
\cdots \\
A_{p} \bullet X
\end{array}\right)
$$

for $A_{1}, \ldots A_{p} \in \mathbb{R}^{m \times n}$ (and where $A_{i} \bullet X=\operatorname{tr}\left(A_{i}^{T} X\right)$). Finding lowest-rank solution to an underdetermined system, nonconvex:

$$
\begin{array}{ll}
\min _{X} & \operatorname{rank}(X) \\
\text { subject to } & A(X)=b
\end{array}
$$

Trace norm approximation:

$$
\begin{array}{ll}
\min _{X} & \|X\|_{\text {tr }} \\
\text { subject to } & A(X)=b
\end{array}
$$

This is indeed an SDP (but harder to show, requires duality ...)

Conic program

A conic program is an optimization problem of the form:

$$
\begin{array}{ll}
\min _{x} & c^{T} x \\
\text { subject to } & A x=b \\
& D(x)+d \in K
\end{array}
$$

Here:

- $c, x \in \mathbb{R}^{n}$, and $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$
- $D: \mathbb{R}^{n} \rightarrow Y$ is a linear map, $d \in Y$, for Euclidean space Y
- $K \subseteq Y$ is a closed convex cone

Both LPs and SDPs are special cases of conic programming. For LPs, $K=\mathbb{R}_{+}^{n}$; for SDPs, $K=\mathbb{S}_{+}^{n}$

Second-order cone program

A second-order cone program or SOCP is an optimization problem of the form:

$$
\begin{array}{ll}
\min _{x} & c^{T} x \\
\text { subject to } & \left\|D_{i} x+d_{i}\right\|_{2} \leq e_{i}^{T} x+f_{i}, i=1, \ldots p \\
& A x=b
\end{array}
$$

This is indeed a cone program. Why? Recall the second-order cone

$$
Q=\left\{(x, t):\|x\|_{2} \leq t\right\}
$$

So we have

$$
\left\|D_{i} x+d_{i}\right\|_{2} \leq e_{i}^{T} x+f_{i} \Longleftrightarrow\left(D_{i} x+d_{i}, e_{i}^{T} x+f_{i}\right) \in Q_{i}
$$

for second-order cone Q_{i} of appropriate dimensions. Now take $K=Q_{1} \times \ldots \times Q_{p}$

Observe that every LP is an SOCP. Further, every SOCP is an SDP
Why? Turns out that

$$
\|x\|_{2} \leq t \Longleftrightarrow\left[\begin{array}{cc}
t I & x \\
x^{T} & t
\end{array}\right] \succeq 0
$$

Hence we can write any SOCP constraint as an SDP constraint
The above is a special case of the Schur complement theorem:

$$
\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right] \succeq 0 \Longleftrightarrow A-B C^{-1} B^{T} \succeq 0
$$

for A, C symmetric and $C \succ 0$

Hey, what about QPs?

Finally, our old friend QPs "sneak" into the hierarchy. Turns out QPs are SOCPs, which we can see by rewriting a QP as

$$
\begin{array}{ll}
\min _{x, t} & c^{T} x+t \\
\text { subject to } & D x \leq d, \frac{1}{2} x^{T} Q x \leq t \\
& A x=b
\end{array}
$$

Now write $\frac{1}{2} x^{T} Q x \leq t \Longleftrightarrow\left\|\left(\frac{1}{\sqrt{2}} Q^{1 / 2} x, \frac{1}{2}(1-t)\right)\right\|_{2} \leq \frac{1}{2}(1+t)$
Take a breath (phew!). Thus we have established the hierachy

$$
\mathrm{LPs} \subseteq \mathrm{QPs} \subseteq \mathrm{SOCPs} \subseteq \mathrm{SDPs} \subseteq \text { Conic programs }
$$

completing the picture we saw at the start

References and further reading

- S. Boyd and L. Vandenberghe (2004), "Convex optimization", Chapter 4
- O. Guler (2010), "Foundations of optimization", Chapter 4
- D. Bertsimas and J. Tsitsiklis (1997), "Introduction to linear optimization," Chapters 1, 2
- A. Nemirovski and A. Ben-Tal (2001), "Lectures on modern convex optimization," Chapters 1-4

[^0]: ${ }^{1}$ Note: a convex optimization problem need not have solutions, i.e., need not attain its minimum, but we will not be careful about this

[^1]: ${ }^{2}$ Candes and Tao (2007), "The Dantzig selector: statistical estimation when p is much larger than $n "$

