
Nonsmooth optimization: Subgradient Method,
Proximal Gradient Method

Yu-Xiang Wang
CS292A

(Based on Ryan Tibshirani’s 10-725)

Last last time: gradient descent

Consider the problem
min
x

f(x)

for f convex and differentiable, dom(f) = Rn. Gradient descent:
choose initial x(0) ∈ Rn, repeat:

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

Step sizes tk chosen to be fixed and small, or by backtracking line
search

If ∇f Lipschitz, gradient descent has convergence rate O(1/ε)

Downsides:

• Requires f differentiable — subgradient method

• Can be slow to converge — proximal gradient method

2

Last time: Subgradient

• Subgradient definition and examples

f(y) ≥ f(x) + ∂fT (y − x), ∀x, y

• Subdifferential Calculus

1. Positive scaling, Additive
2. Affine Composition
3. Pointwise maximum/supremum

• First order optimality condition:

0 ∈ ∂f(x)⇔ x ∈ argmin
x

f(x)

3

Outline

Today:

• Subgradient method

• Convergence analysis

• Proximal gradient descent

• Convergence analysis

• ISTA, matrix completion

• Acceleration

4

Subgradient method

Now consider f convex, having dom(f) = Rn, but not necessarily
differentiable

Subgradient method: like gradient descent, but replacing gradients
with subgradients. I.e., initialize x(0), repeat:

x(k) = x(k−1) − tk · g(k−1), k = 1, 2, 3, . . .

where g(k−1) ∈ ∂f(x(k−1)), any subgradient of f at x(k−1)

Subgradient method is not necessarily a descent method, so we

keep track of best iterate x
(k)
best among x(0), . . . x(k) so far, i.e.,

f(x
(k)
best) = min

i=0,...k
f(x(i))

5

Step size choices

• Fixed step sizes: tk = t all k = 1, 2, 3, . . .

• Diminishing step sizes: choose to meet conditions

∞∑
k=1

t2k <∞,
∞∑
k=1

tk =∞,

i.e., square summable but not summable. Important here that
step sizes go to zero, but not too fast

There are several other options too, but key difference to gradient
descent: step sizes are pre-specified, not adaptively computed

6

Convergence analysis

Assume that f convex, dom(f) = Rn, and also that f is Lipschitz
continuous with constant G > 0, i.e.,

|f(x)− f(y)| ≤ G‖x− y‖2 for all x, y

Theorem: For a fixed step size t, subgradient method satisfies

lim
k→∞

f(x
(k)
best) ≤ f

? +G2t/2

Theorem: For diminishing step sizes, subgradient method sat-
isfies

lim
k→∞

f(x
(k)
best) = f?

7

Basic inequality

Can prove both results from same basic inequality. Key steps:

• Using definition of subgradient,

‖x(k) − x?‖22 ≤
‖x(k−1) − x?‖22 − 2tk

(
f(x(k−1))− f(x?)

)
+ t2k‖g(k−1)‖22

• Iterating last inequality,

‖x(k) − x?‖22 ≤

‖x(0) − x?‖22 − 2

k∑
i=1

ti
(
f(x(i−1))− f(x?)

)
+

k∑
i=1

t2i ‖g(i−1)‖22

8

• Using ‖x(k) − x?‖2 ≥ 0, and letting R = ‖x(0) − x?‖2,

0 ≤ R2 − 2

k∑
i=1

ti
(
f(x(i−1))− f(x?)

)
+G2

k∑
i=1

t2i

• Introducing f(x
(k)
best) = mini=0,...k f(x(i)), and rearranging, we

have the basic inequality

f(x
(k)
best)− f(x?) ≤

R2 +G2
∑k

i=1 t
2
i

2
∑k

i=1 ti

For different step sizes choices, convergence results can be directly
obtained from this bound. E.g., theorems for fixed and diminishing
step sizes follow

9

Convergence rate

The basic inequality tells us that after k steps, we have

f(x
(k)
best)− f(x?) ≤

R2 +G2
∑k

i=1 t
2
i

2
∑k

i=1 ti

With fixed step size t, this gives

f(x
(k)
best)− f

? ≤ R2

2kt
+
G2t

2

For this to be ≤ ε, let’s make each term ≤ ε/2. So we can choose
t = ε/G2, and k = R2/t · 1/ε = R2G2/ε2

I.e., subgradient method has convergence rate O(1/ε2) ... compare
this to O(1/ε) rate of gradient descent

10

Example: regularized logistic regression

Given (xi, yi) ∈ Rp × {0, 1} for i = 1, . . . n, the logistic regression
loss is

f(β) =

n∑
i=1

(
− yixTi β + log(1 + exp(xTi β))

)
This is a smooth and convex, with

∇f(β) =

n∑
i=1

(
yi − pi(β)

)
xi

where pi(β) = exp(xTi β)/(1 + exp(xTi β)), i = 1, . . . n. Consider
the regularized problem:

min
β

f(β) + λ · P (β)

where P (β) = ‖β‖22, ridge penalty; or P (β) = ‖β‖1, lasso penalty

11

Ridge: use gradients; lasso: use subgradients. Example here has
n = 1000, p = 20:

0 50 100 150 200

1e
−

13
1e

−
10

1e
−

07
1e

−
04

1e
−

01

Gradient descent

k

f−
fs

ta
r

t=0.001

0 50 100 150 200

0.
02

0.
05

0.
20

0.
50

2.
00

Subgradient method

k

f−
fs

ta
r

t=0.001
t=0.001/k

Step sizes hand-tuned to be favorable for each method (of course
comparison is imperfect, but it reveals the convergence behaviors)

12

Polyak step sizes

Polyak step sizes: when the optimal value f? is known, take

tk =
f(x(k−1))− f?

‖g(k−1)‖22
, k = 1, 2, 3, . . .

Can be motivated from first step in subgradient proof:

‖x(k)−x?‖22 ≤ ‖x(k−1)−x?‖22−2tk
(
f(x(k−1))−f(x?)

)
+t2k‖g(k−1)‖22

Polyak step size minimizes the right-hand side

With Polyak step sizes, can show subgradient method converges to
optimal value. Convergence rate is still O(1/ε2)

13

Example: intersection of sets

Suppose we want to find x? ∈ C1 ∩ . . . ∩ Cm, i.e., find a point in
intersection of closed, convex sets C1, . . . Cm

First define

fi(x) = dist(x,Ci), i = 1, . . .m

f(x) = max
i=1,...m

fi(x)

and now solve
min
x

f(x)

Check: is this convex?

Note that f? = 0 ⇐⇒ x? ∈ C1 ∩ . . . ∩ Cm

14

Recall the distance function dist(x,C) = miny∈C ‖y − x‖2. Last
time we computed its gradient

∇dist(x,C) =
x− PC(x)

‖x− PC(x)‖2

where PC(x) is the projection of x onto C

Also recall subgradient rule: if f(x) = maxi=1,...m fi(x), then

∂f(x) = conv

(⋃
i:fi(x)=f(x)

∂fi(x)

)

So if fi(x) = f(x) and gi ∈ ∂fi(x), then gi ∈ ∂f(x)

15

Put these two facts together for intersection of sets problem, with
fi(x) = dist(x,Ci): if Ci is farthest set from x (so fi(x) = f(x)),
and

gi = ∇fi(x) =
x− PCi(x)

‖x− PCi(x)‖2
then gi ∈ ∂f(x)

Now apply subgradient method, with Polyak size tk = f(x(k−1)).
At iteration k, with Ci farthest from x(k−1), we perform update

x(k) = x(k−1) − f(x(k−1))
x(k−1) − PCi(x

(k−1))

‖x(k−1) − PCi(x
(k−1))‖2

= PCi(x
(k−1))

16

For two sets, this is the famous alternating projections algorithm1,
i.e., just keep projecting back and forth

(From Boyd’s lecture notes)

1von Neumann (1950), “Functional operators, volume II: The geometry of
orthogonal spaces”

17

Projected subgradient method

To optimize a convex function f over a convex set C,

min
x

f(x) subject to x ∈ C

we can use the projected subgradient method. Just like the usual
subgradient method, except we project onto C at each iteration:

x(k) = PC
(
x(k−1) − tk · g(k−1)

)
, k = 1, 2, 3, . . .

Assuming we can do this projection, we get the same convergence
guarantees as the usual subgradient method, with the same step
size choices

18

What sets C are easy to project onto? Lots, e.g.,

• Affine images: {Ax+ b : x ∈ Rn}
• Solution set of linear system: {x : Ax = b}
• Nonnegative orthant: Rn+ = {x : x ≥ 0}
• Some norm balls: {x : ‖x‖p ≤ 1} for p = 1, 2,∞
• Some simple polyhedra and simple cones

Warning: it is easy to write down seemingly simple set C, and PC
can turn out to be very hard! E.g., generally hard to project onto
arbitrary polyhedron C = {x : Ax ≤ b}

Note: projected gradient descent works too, more next time ...

19

Can we do better?

Upside of the subgradient method: broad applicability. Downside:
O(1/ε2) convergence rate over problem class of convex, Lipschitz
functions is really slow

Nonsmooth first-order methods: iterative methods updating x(k) in

x(0) + span{g(0), g(1), . . . g(k−1)}

where subgradients g(0), g(1), . . . g(k−1) come from weak oracle

Theorem (Nesterov): For any k ≤ n−1 and starting point x(0),
there is a function in the problem class such that any nonsmooth
first-order method satisfies

f(x(k))− f? ≥ RG

2(1 +
√
k + 1)

20

What if we assume strong convexity?

Are there functions that are non-smooth but strongly convex?

Theorem: Let f be m-strongly convex and G-Lipschitz. Choose
tk = 2

m(k+1) , subgradient method satisfies

min
k
f(xk)− f∗ ≤

2G2

mk
Proof: By the definition of Strong Convexity, we can obtain a

stronger inequality that gets rid of the positive t2G2 term when
the stepsize t is appropriately chosen.

See (Lacoste-Julien, Schmidt and Bach, 2012) for details.

The bound is also optimal.

21

Improving on the subgradient method

In words, we cannot do better than the O(1/ε2) rate of
subgradient method for Lipschitz, convex functions.
We cannot do better than O(1/ε) rate for Lipschitz and strongly
convex Functions. (unless we go beyond nonsmooth first-order
methods).

So instead of trying to improve across the board, we will focus on
minimizing composite functions of the form

f(x) = g(x) + h(x)

where g is convex and differentiable, h is convex and nonsmooth
but “simple”

For a lot of problems (i.e., functions h), we can recover the O(1/ε)
rate of gradient descent with a simple algorithm, having important
practical consequences

22

Decomposable functions

Suppose
f(x) = g(x) + h(x)

• g is convex, differentiable, dom(g) = Rn

• h is convex, not necessarily differentiable

If f were differentiable, then gradient descent update would be:

x+ = x− t · ∇f(x)

Recall motivation: minimize quadratic approximation to f around
x, replace ∇2f(x) by 1

t I,

x+ = argmin
z

f(x) +∇f(x)T (z − x) +
1

2t
‖z − x‖22︸ ︷︷ ︸

f̃t(z)

23

In our case f is not differentiable, but f = g + h, g differentiable.
Why don’t we make quadratic approximation to g, leave h alone?

I.e., update

x+ = argmin
z

g̃t(z) + h(z)

= argmin
z

g(x) +∇g(x)T (z − x) +
1

2t
‖z − x‖22 + h(z)

= argmin
z

1

2t

∥∥z − (x− t∇g(x)
)∥∥2

2
+ h(z)

1
2t

∥∥z − (x− t∇g(x)
)∥∥2

2
stay close to gradient update for g

h(z) also make h small

24

Proximal gradient descent

Define proximal mapping:

proxt(x) = argmin
z

1

2t
‖x− z‖22 + h(z)

Proximal gradient descent: choose initialize x(0), repeat:

x(k) = proxtk
(
x(k−1) − tk∇g(x(k−1))

)
, k = 1, 2, 3, . . .

To make this update step look familiar, can rewrite it as

x(k) = x(k−1) − tk ·Gtk(x(k−1))

where Gt is the generalized gradient of f , (Nesterov’s Gradient
Mapping!)

Gt(x) =
x− proxt

(
x− t∇g(x)

)
t

25

What good did this do?

You have a right to be suspicious ... may look like we just swapped
one minimization problem for another

Key point is that proxt(·) is can be computed analytically for a lot
of important functions h. Note:

• Mapping proxt(·) doesn’t depend on g at all, only on h

• Smooth part g can be complicated, we only need to compute
its gradients

Convergence analysis: will be in terms of number of iterations of
the algorithm. Each iteration evaluates proxt(·) once, and this can
be cheap or expensive, depending on h!

(Similar to Gradient Descent. You will prove it in HW2!)

26

Example: ISTA

Given y ∈ Rn, X ∈ Rn×p, recall lasso criterion:

f(β) =
1

2
‖y −Xβ‖22︸ ︷︷ ︸

g(β)

+
.

.
λ‖β‖1︸ ︷︷ ︸
h(β)

Prox mapping is now

proxt(β) = argmin
z

1

2t
‖β − z‖22 + λ‖z‖1

= Sλt(β)

where Sλ(β) is the soft-thresholding operator,

[Sλ(β)]i =

βi − λ if βi > λ

0 if − λ ≤ βi ≤ λ
βi + λ if βi < −λ

, i = 1, . . . n

27

Recall ∇g(β) = −XT (y−Xβ), hence proximal gradient update is:

β+ = Sλt
(
β + tXT (y −Xβ)

)
Often called the iterative soft-thresholding algorithm (ISTA).2 Very
simple algorithm

Example of proximal
gradient (ISTA) vs.
subgradient method
convergence rates

0 200 400 600 800 1000

0.
02

0.
05

0.
10

0.
20

0.
50

k

f−
fs

ta
r

Subgradient method
Proximal gradient

2Beck and Teboulle (2008), “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems”

28

Backtracking line search

Backtracking for prox gradient descent works similar as before (in
gradient descent), but operates on g and not f

Choose parameter 0 < β < 1. At each iteration, start at t = tinit,
and while

g
(
x− tGt(x)

)
> g(x)− t∇g(x)TGt(x) +

t

2
‖Gt(x)‖22

shrink t = βt, for some 0 < β < 1. Else perform proximal gradient
update

(Alternative formulations exist that require less computation, i.e.,
fewer calls to prox)

29

Convergence analysis

For criterion f(x) = g(x) + h(x), we assume:

• g is convex, differentiable, dom(g) = Rn, and ∇g is Lipschitz
continuous with constant L > 0

• h is convex, proxt(x) = argminz{‖x− z‖22/(2t) + h(z)} can
be evaluated

Theorem: Proximal gradient descent with fixed step size t ≤
1/L satisfies

f(x(k))− f? ≤ ‖x
(0) − x?‖22

2tk

and same result holds for backtracking, with t replaced by β/L

Proximal gradient descent has convergence rate O(1/k) or O(1/ε).
Same as gradient descent! (But remember, prox cost matters ...)

30

Example: matrix completion

Given a matrix Y ∈ Rm×n, and only observe entries Yij , (i, j) ∈ Ω.
Suppose we want to fill in missing entries (e.g., for a recommender
system), so we solve a matrix completion problem:

min
B

1

2

∑
(i,j)∈Ω

(Yij −Bij)2 + λ‖B‖tr

Here ‖B‖tr is the trace (or nuclear) norm of B,

‖B‖tr =

r∑
i=1

σi(B)

where r = rank(B) and σ1(X) ≥ . . . ≥ σr(X) ≥ 0 are the singular
values

31

Define PΩ, projection operator onto observed set:

[PΩ(B)]ij =

{
Bij (i, j) ∈ Ω

0 (i, j) /∈ Ω

Then the criterion is

f(B) =
1

2
‖PΩ(Y)− PΩ(B)‖2F︸ ︷︷ ︸

g(B)

+
.

.
λ‖B‖tr︸ ︷︷ ︸
h(B)

Two ingredients needed for proximal gradient descent:

• Gradient calculation: ∇g(B) = −(PΩ(Y)− PΩ(B))

• Prox function:

proxt(B) = argmin
Z

1

2t
‖B − Z‖2F + λ‖Z‖tr

32

Claim: proxt(B) = Sλt(B), matrix soft-thresholding at the level λ.
Here Sλ(B) is defined by

Sλ(B) = UΣλV
T

where B = UΣV T is an SVD, and Σλ is diagonal with

(Σλ)ii = max{Σii − λ, 0}

Proof: note that proxt(B) = Z, where Z satisfies

0 ∈ Z −B + λt · ∂‖Z‖tr

Helpful fact: if Z = UΣV T , then

∂‖Z‖tr = {UV T +W : ‖W‖op ≤ 1, UTW = 0, WV = 0}

Now plug in Z = Sλt(B) and check that we can get 0

33

Hence proximal gradient update step is:

B+ = Sλt

(
B + t

(
PΩ(Y)− PΩ(B)

))

Note that ∇g(B) is Lipschitz continuous with L = 1, so we can
choose fixed step size t = 1. Update step is now:

B+ = Sλ
(
PΩ(Y) + P⊥Ω (B)

)
where P⊥Ω projects onto unobserved set, PΩ(B) + P⊥Ω (B) = B

This is the soft-impute algorithm3, simple and effective method for
matrix completion

3Mazumder et al. (2011), “Spectral regularization algorithms for learning
large incomplete matrices”

34

Special cases

Proximal gradient descent also called composite gradient descent,
or generalized gradient descent

Why “generalized”? This refers to the several special cases, when
minimizing f = g + h:

• h = 0 — gradient descent

• h = IC — projected gradient descent

• g = 0 — proximal point algorithm

Therefore these algorithms all have O(1/ε) convergence rate

35

Projected gradient descent

Given closed, convex set C ∈ Rn,

min
x∈C

g(x) ⇐⇒ min
x

g(x) + IC(x)

where IC(x) =

{
0 x ∈ C
∞ x /∈ C

is the indicator function of C

Hence

proxt(x) = argmin
z

1

2t
‖x− z‖22 + IC(z)

= argmin
z∈C

‖x− z‖22

I.e., proxt(x) = PC(x), projection operator onto C

36

Therefore proximal gradient update step is:

x+ = PC
(
x− t∇g(x)

)
i.e., perform usual gradient update and then project back onto C.
Called projected gradient descent

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

c(
)

●

●

37

Proximal point algorithm

Consider for h convex (not necessarily differentiable),

min
x

h(x)

Proximal gradient update step is just:

x+ = argmin
z

1

2t
‖x− z‖22 + h(z)

Called proximal minimization algorithm. Faster than subgradient
method, but not implementable unless we know prox in closed form

38

What happens if we can’t evaluate prox?

Theory for proximal gradient, with f = g + h, assumes that prox
function can be evaluated, i.e., assumes the minimization

proxt(x) = argmin
z

1

2t
‖x− z‖22 + h(z)

can be done exactly. In general, not clear what happens if we just
minimize this approximately

But, if you can precisely control the errors in approximating the
prox operator, then you can recover the original convergence rates4

In practice, if prox evaluation is done approximately, then it should
be done to decently high accuracy

4Schmidt et al. (2011), “Convergence rates of inexact proximal-gradient
methods for convex optimization”

39

Acceleration

Turns out we can accelerate proximal gradient descent in order to
achieve the optimal O(1/

√
ε) convergence rate. Four ideas (three

acceleration methods) by Nesterov:

• 1983: original acceleration idea for smooth functions

• 1988: another acceleration idea for smooth functions

• 2005: smoothing techniques for nonsmooth functions, coupled
with original acceleration idea

• 2007: acceleration idea for composite functions5

We will follow Beck and Teboulle (2008), an extension of Nesterov
(1983) to composite functions6

5Each step uses entire history of previous steps and makes two prox calls
6Each step uses information from two last steps and makes one prox call

40

Accelerated proximal gradient method

As before, consider:
min
x

g(x) + h(x)

where g convex, differentiable, and h convex. Accelerated proximal
gradient method: choose initial point x(0) = x(−1) ∈ Rn, repeat:

v = x(k−1) +
k − 2

k + 1
(x(k−1) − x(k−2))

x(k) = proxtk
(
v − tk∇g(v)

)
for k = 1, 2, 3, . . .

• First step k = 1 is just usual proximal gradient update

• After that, v = x(k−1) + k−2
k+1(x(k−1) − x(k−2)) carries some

“momentum” from previous iterations

• h = 0 gives accelerated gradient method

41

Momentum weights:

●

●

●

●

●

●

●
●
●
●
●●

●●
●●

●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

−
0.

5
0.

0
0.

5
1.

0

k

(k
 −

 2
)/

(k
 +

 1
)

42

Back to lasso example: acceleration can really help!

0 200 400 600 800 1000

0.
00

2
0.

00
5

0.
02

0
0.

05
0

0.
20

0
0.

50
0

k

f−
fs

ta
r

Subgradient method
Proximal gradient
Nesterov acceleration

Note: accelerated proximal gradient is not a descent method

43

Backtracking line search

Backtracking under with acceleration in different ways. Simple
approach: fix β < 1, t0 = 1. At iteration k, start with t = tk−1,
and while

g(x+) > g(v) +∇g(v)T (x+ − v) +
1

2t
‖x+ − v‖22

shrink t = βt, and let x+ = proxt(v − t∇g(v)). Else keep x+

Note that this strategy forces us to take decreasing step sizes ...
(more complicated strategies exist which avoid this)

44

Convergence analysis

For criterion f(x) = g(x) + h(x), we assume as before:

• g is convex, differentiable, dom(g) = Rn, and ∇g is Lipschitz
continuous with constant L > 0

• h is convex, proxt(x) = argminz{‖x− z‖22/(2t) + h(z)} can
be evaluated

Theorem: Accelerated proximal gradient method with fixed step
size t ≤ 1/L satisfies

f(x(k))− f? ≤ 2‖x(0) − x?‖22
t(k + 1)2

and same result holds for backtracking, with t replaced by β/L

Achieves optimal rate O(1/k2) or O(1/
√
ε) for first-order methods

45

FISTA

Back to lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

Recall ISTA (Iterative Soft-thresholding Algorithm):

β(k) = Sλtk(β(k−1) + tkX
T (y −Xβ(k−1))

)
, k = 1, 2, 3, . . .

Sλ(·) being vector soft-thresholding. Applying acceleration gives us
FISTA (F is for Fast):7 for k = 1, 2, 3, . . .,

v = β(k−1) +
k − 2

k + 1
(β(k−1) − β(k−2))

β(k) = Sλtk
(
v + tkX

T (y −Xv)
)
,

7Beck and Teboulle (2008) actually call their general acceleration technique
(for general g, h) FISTA, which may be somewhat confusing

46

Lasso regression: 100 instances (with n = 100, p = 500):

0 200 400 600 800 1000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00

k

f(
k)

−
fs

ta
r

ISTA
FISTA

47

Lasso logistic regression: 100 instances (n = 100, p = 500):

0 200 400 600 800 1000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00

k

f(
k)

−
fs

ta
r

ISTA
FISTA

48

Is acceleration always useful?

Acceleration can be a very effective speedup tool ... but should it
always be used?

In practice the speedup of using acceleration is diminished in the
presence of warm starts. E.g., suppose want to solve lasso problem
for tuning parameters values

λ1 > λ2 > . . . > λr

• When solving for λ1, initialize x(0) = 0, record solution x̂(λ1)

• When solving for λj , initialize x(0) = x̂(λj−1), the recorded
solution for λj−1

Over a fine enough grid of λ values, proximal gradient descent can
often perform just as well without acceleration

49

Sometimes backtracking and acceleration can be disadvantageous!
Recall matrix completion problem: the proximal gradient update is

B+ = Sλ

(
B + t

(
PΩ(Y)− P⊥(B)

))
where Sλ is the matrix soft-thresholding operator ... requires SVD

• One backtracking loop evaluates generalized gradient Gt(x),
i.e., evaluates proxt(x), across various values of t. For matrix
completion, this means multiple SVDs ...

• Acceleration changes argument we pass to prox: v − t∇g(v)
instead of x− t∇g(x). For matrix completion (and t = 1),

B −∇g(B) = PΩ(Y)︸ ︷︷ ︸
sparse

+P⊥Ω (B)︸ ︷︷ ︸
low rank

a

⇒ fast SVD

V −∇g(V) = PΩ(Y)︸ ︷︷ ︸
sparse

+ P⊥Ω (V)︸ ︷︷ ︸
not necessarily

low rank

⇒ slow SVD

50

References and further reading

• S. Boyd, Lecture notes for EE 264B, Stanford University,
Spring 2010-2011

• Y. Nesterov (1998), “Introductory lectures on convex
optimization: a basic course”, Chapter 3

• B. Polyak (1987), “Introduction to optimization”, Chapter 5

• L. Vandenberghe, Lecture notes for EE 236C, UCLA, Spring
2011-2012

51

References and further reading

Nesterov’s four ideas (three acceleration methods):

• Y. Nesterov (1983), “A method for solving a convex
programming problem with convergence rate O(1/k2)”

• Y. Nesterov (1988), “On an approach to the construction of
optimal methods of minimization of smooth convex functions”

• Y. Nesterov (2005), “Smooth minimization of non-smooth
functions”

• Y. Nesterov (2007), “Gradient methods for minimizing
composite objective function”

52

Extensions and/or analyses:

• A. Beck and M. Teboulle (2008), “A fast iterative
shrinkage-thresholding algorithm for linear inverse problems”

• S. Becker and J. Bobin and E. Candes (2009), “NESTA: a
fast and accurate first-order method for sparse recovery”

• P. Tseng (2008), “On accelerated proximal gradient methods
for convex-concave optimization”

Helpful lecture notes/books:

• E. Candes, Lecture notes for Math 301, Stanford University,
Winter 2010-2011

• Y. Nesterov (1998), “Introductory lectures on convex
optimization: a basic course”, Chapter 2

• L. Vandenberghe, Lecture notes for EE 236C, UCLA, Spring
2011-2012

53

