
CS292A Convex Optimization: Gradient Methods and Online Learning Spring 2019

Lecture 5: April 23
Lecturer: Yu-Xiang Wang Scribes: Yimeng Liu

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

5.1 Last time: Subgradient

Subgradients are alternatives to gradients when the function f is non-smooth or non-differentiable. For
convex and differentiable f :

f(y) ≥ f(x) +∇f(x)T (y − x), ∀x, y

A subgradient of a convex function f at x is any g ∈ Rn such that:

f(y) ≥ f(x) + gT (y − x), ∀x, y

5.2 Subgradient Method

Now consider f convex, having dom(f) = Rn, but not necessarily differentiable. Our objective is to minimize
f . Subgradient method is like gradient descent, but we replace gradients with subgradients, i.e. initialize
x(0), repeat:

x(k) = x(k−1) − tk · g(k−1), k = 1, 2, 3, ...

where g(k−1) ∈ ∂f(x(k−1)) is any subgradient of f at x(k−1), and ∂f represents the subdifferential of f .

Subgradient method is not necessarily a descent method, so we keep track of best iterate x
(k)
best among

x(0), ..., x(k) so far, i.e.,

f(x
(k)
best) = mini=0,...,k f(x(i))

5.2.1 Step size choices

1. Fixed step sizes: tk = t, for all k = 1, 2, 3, ...

2. Diminishing step sizes: choose to meet conditions

Σ∞k=1 t
2
k <∞, Σ∞k=1 tk =∞

These two inequalities, square summable but not summable, are important here to ensure that step
sizes diminish to zero, but not too fast.

5-1

5-2 Lecture 5: April 23

3. Polyak step sizes: when the optimal value f∗ is known, take

tk =
f(x(k−1))− f∗

||g(k−1)||22
, k = 1, 2, 3, ...

Polyak step size minimizes the right-hand side of

||x(k) − x∗||22 ≤ ||x(k−1) − x∗||22 − 2tk(f(x(k−1))− f(x∗)) + t2k||g(k−1)||22

5.2.2 Convergence analysis

Assume that f convex, dom(f) = Rn, and also that f is Lipschitz continuous with constant G > 0, i.e.,

|f(x)− f(y)| ≤ G||x− y||2, ∀x, y

Theorem 5.1 Convergence for fixed step size: For a fixed step size t, subgradient method satisfies

limk→∞f(x
(k)
best) ≤ f

∗ +
G2t

2

Theorem 5.2 Convergence for diminishing step size: For diminishing step sizes that satisfy the con-
ditions from Section 5.2.1, subgradient method satisfies

limk→∞f(x
(k)
best) = f∗

Proof: Can prove both the theorems from a basic inequality.

For a convex, G-Lipschitz function f , a subgradient has bounded norm. That is,

g ∈ ∂f(x)⇒ ||g||2 ≤ G

From the definition of a subgradient,

||x(k) − x∗||22 = ||x(k−1) − tkg(k−1) − x∗||22
= ||x(k−1) − x∗||22 + t2k||g(k−1)||22 − 2tk(g(k−1))T (x(k−1) − x∗)
≤ ||x(k−1) − x∗||22 + t2kG

2 − 2tk(f(x(k−1))− f(x∗))

Where we use the definition of a subgradient in the last term on the right hand side.

f(x∗) ≥ f(x(k−1)) + (g(k−1))T (x(k−1) − x∗)
⇒ (g(k−1))T (x(k−1) − x∗) ≤ f(x∗)− f(x(k−1))

Iterating last inequality, we can get

||x(k)− x∗||22 ≤ ||x(0)− x∗||22 + Σk
i=1t

2
iG

2 − 2Σk
i=1ti(f(x(i−1))− f(x∗))

⇒2Σk
i=1ti(f(x(i−1))− f(x∗)) ≤ R2 + Σk

i=1t
2
iG

2

Each term in the summation on the left hand side

ti(f(x(i−1))− f(x∗)) ≥ ti(f(x
(k)
best)− f(x∗))

⇒2Σk
i=1ti(f(x

(k)
best)− f(x∗)) ≤ R2 + Σk

i=1t
2
iG

2

⇒f(x
(k)
best)− f(x∗) ≤ R2 + Σk

i=1t
2
iG

2

2Σk
i=1ti

Lecture 5: April 23 5-3

where f(x
(k)
best) = mini=0,...,kf(x(i)) is the objective value at the best iterate x

(k)
best.

This equation is the basic inequality we can use to derive convergence results for different step sizes.

1. For ti = t,∀i

f(x
(k)
best)− f(x∗) ≤ R2 + t2kG2

2tk

as k→∞−−−−−→ R2

2tk
+
G2t

2

2. For diminishing ti

f(x
(k)
best)− f(x∗) ≤ R2 + Σk

i=1t
2
iG

2

2Σk
i=1ti

as k→∞−−−−−→

R2 +G2 Σk
i=1t

2
i︸ ︷︷ ︸

<∞

2 Σk
i=1ti︸ ︷︷ ︸
→∞

→∞

This concludes the proof.

Convergence rate The basic inequality tells us that after k steps, we have

f(x
(k)
best)− f(x∗) ≤ R2 + Σk

i=1t
2
iG

2

2Σk
i=1ti

With fixed step size t, this gives

f(x
(k)
best)− f(x∗) ≤ R2

2tk
+
G2t

2

For this to be ≤ ε, lets make each term ≤ ε/2. So we can choose t = ε/G2, and k = R2/t · 1/ε = R2G2/ε2.

This shows that subgradient method has convergence rate O(1/ε2) (compare this to convergence rate of
O(1/ε) for gradient descent).

5.2.3 Projected subgradient method

To optimize a convex function f over a convex set C,

min f(x) subject to x ∈ C

we can use the projected subgradient method. Just like the usual subgradient method, except we project
onto C at each iteration:

x(k) = PC(x(k−1) − tk · g(k−1)), k = 1, 2, 3, ...

Assuming we can do this projection, we get the same convergence guarantees as the usual subgradient
method, with the same step size choices.

There are many types of sets C that are easy to project onto, e.g.,

• Affine images: {Ax+ b : x ∈ Rn}

• Solution set of linear system: {x : Ax = b}

• Nonnegative orthant: Rn
+ = {x : x ≥ 0}

5-4 Lecture 5: April 23

• Some norm balls: {x : ||x||p ≤ 1} for p = 1, 2,∞

• Some simple polyhedra and simple cones

Warning: it is easy to write down seemingly simple set C, and PC can turn out to be very hard. E.g.,
generally hard to project onto arbitrary polyhedron C = {x : Ax ≤ b}.

5.2.4 Improving on the subgradient method

The upside of the subgradient method is that it has broad applicability. The downside is that the convergence
rate O(1/ε2) is slow over the problem class of convex, Lipschitz functions. We will see if we can improve the
convergence rate.

Nonsmooth first-order methods are the iterative methods that update x(k) in the following way:

x(0) + span{g(0), g(1), ..., g(k−1)}

where subgradients g(0), g(1), ..., g(k−1) come from weak oracle.

Theorem 5.3 (Nesterov) For any k ≤ n − 1 and starting point x(0), there is a function in the problem
class such that any nonsmooth first-order method satisfies

f(x(k))− f∗ ≥ RG

2(1 +
√
k + 1)

From Nesterovs theorem we can find that f(x(k))− f∗ has a lower bound, which gives the convergence rate
O(1/ε2). In summary, we cannot do better than the O(1/ε2) convergence rate for the subgradient method
unless we go beyond nonsmooth first-order methods.

So instead of trying to improve across the board, we will focus on minimizing composite functions of the
form

f(x) = g(x) + h(x)

where g is convex and differentiable, h is convex and nonsmooth but of simple form.

For a lot of problems (i.e., functions h), we can recover the O(1/ε) rate of gradient descent with a simple
algorithm, which has important practical consequences.

5.3 Proximal Gradient Descent

Suppose f(x) is decomposable:

f(x) = g(x) + h(x)

Where g is convex, differentiable, dom(g) = Rn; h is convex, but not necessary differentiable.

If f were differentiable, then gradient descent update would be:

x+ = x− t · ∇f(x)

Lecture 5: April 23 5-5

We can do quadratic approximation to get:

x+ = arg minz f(x) +∇f(x)T (z − x) +
1

2t
||z − x||22

If we apply this quadratic approximation to g and keep h the same, we get:

x+ = arg minz

1

2t
||z − (x− t∇g(x))||22 + h(z)

The idea is to stay close to gradient update for g and also make h small. This function is defined as proximal
mapping. Rewrite as follows:

proxt(x) = arg minz

1

2t
||x− z||22 + h(z)

This function has unique solution because the square term is strictly convex and h(x) is convex. So proximal
gradient descent is just repeat following steps:

x(k) = proxtk
(x(k − 1)− tk∇g(x(k−1))), k = 1, 2, 3, ...

To make this update step look familiar, can rewrite it as

x(k) = x(k−1) − tk ·Gtk(x(k−1))

where Gt is the generalized gradient of f , (Nesterovs Gradient Mapping)

Gt(x) =
x− proxt(x− t∇g(x))

t

Key point is that proxt(·) is can be computed analytically for a lot of important functions h. Note that:

• Mapping proxt(·) does not depend on g at all, only on h.

• Smooth part g can be complicated, we only need to compute its gradients.

5.3.1 Backtracking line search

Backtracking for prox gradient descent works similar as before (in gradient descent), but operates on g and
not f . Choose parameter 0 < β < 1. At each iteration, start at t = tinit, and while

g(x− tGt(x)) > g(x)− t∇g(x)TGt(x) +
t

2
||Gt(x)||22

shrink t = βt, for some 0 < β < 1. Otherwise perform proximal gradient update.

5.3.2 Convergence analysis

Theorem 5.4 Proximal gradient descent with fixed step size t ≤ 1/L satisfies

f(x(k))− f∗ ≤ ||x
(0) − x∗||22

2tk

and same result holds for backtracking, with t replaced by β/L.

So proximal gradient descent has convergence rate O(1/k) or O(1/ε), which is the same as gradient descent.
But we need to consider prox cost too.

5-6 Lecture 5: April 23

5.3.3 Special cases

Proximal gradient descent also called composite gradient descent, or generalized gradient descent. It is called
generalized because of several special cases:

• h = 0 : gradient descent

• h = IC : projected gradient descent

• g = 0 : proximal point algorithm

5.3.3.1 Projected gradient descent

Given closed, convex set C ∈ Rn,

minx∈C g(x)⇐⇒ minx g(x) + IC(x)

where IC(x) =

{
0 x ∈ C
∞ x /∈ C is the indicator function of C. Hence,

proxt(x) = arg minz

1

2t
||x− z||22 + IC(z)

= arg minz∈C ||x− z||22
I.e., proxt(x) = PC(x), projection operator onto C. Therefore proximal gradient update step is:

x+ = PC(x− t∇g(x))

5.3.3.2 Proximal point algorithm

When g = 0, gradient of g is also zero, so the update is just

x+ = arg minz

1

2t
||x− z||22 + h(z)

Called proximal minimization algorithm. Faster than subgradient method, but not implementable unless we
know prox in closed form.

In practice, if we cannot evaluate proxt, we can consider to approximate it if we know how to control the
error.

5.3.4 Acceleration

As before, consider:

minx g(x) + h(x)

where g convex, differentiable, and h convex. Accelerated proximal gradient method : choose initial point
x(0) = x(1) ∈ Rn, repeat:

v = x(k−1) +
k − 2

k + 1
(x(k−1) − x(k−2))

x(k) = proxtk
(v − tk∇g(v))

for k = 1, 2, 3, ...

Lecture 5: April 23 5-7

• First step k = 1 is just usual proximal gradient update

• After that, v = x(k−1) + k−2
k+1 (x(k−1) − x(k−2)) carries some momentum from previous iterations

• h = 0 gives accelerated gradient method

5.3.4.1 Backtracking line search

Simple approach: fix β < 1, t0 = 1. At iteration k, start with t = tk−1, and while

g(x+) > g(v) +∇g(v)T (x+ − v) +
1

2t
||x+ − v||22

shrink t = βt, and let x+ = proxt(v − t∇g(v)). Otherwise keep x+.

5.3.4.2 Convergence analysis

Theorem 5.5 Accelerated proximal gradient method with fixed step size t ≤ 1/L satisfies

f(x(k))− f∗ ≤ 2||x(0) − x∗||22
t(k + 1)2

and same result holds for backtracking, with t replaced by β/L.

Achieves optimal rate O(1/k2) or O(1/
√
ε) for first-order methods.

References

[1] Stephen Boyd, “Subgradient Methods, Notes for EE364b, Stanford University, Spring 2013-
14”, May 2014; based on notes from January 2007.

[2] Neal Parikh, Stephen Boyd, “Proximal Algorithms, Foundations and Trends in Optimiza-
tion, Stanford University”, Vol. 1, No. 3 (2013) 123-231.

