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Last time: proximal gradient descent

Consider the problem
min g(z) + h(x)
x
with g, h convex, g differentiable, and h “simple” in so much as

1
prox,(x) = argmin 2—t]|x — 2|13 + h(2)
z

is computable. Proximal gradient descent: let 2(?) € R™, repeat:
) = prox;, (x(k_l) — thg(x(k_l))), k=1,2,3,...
Step sizes t; chosen to be fixed and small, or via backtracking

If Vg is Lipschitz with constant L, then this has convergence rate
O(1/€). Lastly we can accelerate this, to optimal rate O(1//€)



Last time: proximal gradient descent

In the convergence proof (HW2 Q3), we rewrote update as the
following;:

o) = pk=1) g Gy, (zF=1)
where G is the generalized gradient of f, (Nesterov's Gradient
Mapping!)
x — prox, (z — tVg(z))
t
Then we more or less followed the convergence proof of the
standard Gradient Descent (Lecture 3).

Gt(x) =

What is G¢7 Is GG the gradient of some function?

What exactly is the proximal gradient algorithm descent doing?



Outline

Today:
® Fenchel conjugate
® Prox Operator, Moreau Envelope and Smoothing

® |nterpreting proximal algorithms



(Fenchel) Conjugate function
Given a function f : R™ — R, define its conjugate f*: R" — R,
F*(y) = max y'z — f(x)
Note that f* is always convex, since it is the pointwise maximum

of convex (affine) functions in y (here f need not be convex)

f*(y) : maximum gap between
linear function 372 and f(z)

V v (From B & V page 91)
0,1 )

For differentiable f, conjugation is called the Legendre transform




Properties:

® Fenchel’s inequality: for any z,y,

fl@)+ fy) = 2"y

e Conjugate of conjugate f** satisfies f** < f
If fis closed and convex, then f** = f

If f is closed and convex, then for any x,y,

redf(y) < yeaif(zx)
= fl@)+ 'y =2"y

If f(u,v) = fi(u)+ fa(v), then
fr(w, z) = fi(w) + f5(2)



Examples:

e Simple quadratic: let f(z) = %xTQ:c, where Q > 0. Then

yla — %xTQx is strictly concave in y and is maximized at

y=Q 'z, so ,
) =5y Q"y

¢ Indicator function: if f(z) = Io(z), then its conjugate is
* — JI* — T
fi(y) =1Ic(y) =max y'a
called the support function of C'
® Norm: if f(z) = ||z, then its conjugate is
W) =1z z).<13(v)

where || - ||« is the dual norm of | - ||



Moreau Envelope and Smoothing

We talked about prox operator
1 9
prox, ¢ (z) € argmin o ly — all* + £(y).
y

Note that the output of prox is in the domy.
The Moreau envelope of a function f defined as

1
Mg () := min ly z|> + f(y)

1
= g\lproxt,f(x) —z|* + f(prox, ¢(z)).
The Moreau envelope outputs the optimal objective value.

These quantities can be defined by for general functions but many
of their remarkable properties only apply to convex f.



Example: Huber function

Coming from robust statistics (Huber, 1964, Annals of Statistics).

Ls(x) s if || <o
xTr) =
’ §(|lz| — 16)  otherwise.

We can rewrite the Huber function as the Moreau Envelope of the
absolute value function | - |.

1
My (x) = min o (2 — y)? + 3y

Proof.

We know that the argmax is the soft-shresholding operator.
Substitute that into the equation. If x| > ¢, the optimal solution
y* =z — dsign(z), and the criterion value is 362 + §|z| — 6°.

If [x| <9, the y* =0 and Mjs)|(z) = ta? O



Example: Huber function

n=1
—
18 — ] =Huber
b P =Shrinkage
1
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(Stolen from Yaoliang Yu's wonderful notes. [Click Here]. )
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https://cs.uwaterloo.ca/~y328yu/mynotes/po.pdf

Properties of a Moreau Envelope and Prox Operator

1. (Yoshida-Moreau Smoothing) M, ¢(x) of any convex function
is 1/t-smooth. (Need duality to write down a clean proof.)

2. (Preservation of optimal criterion.) min, f(z) = min, My (z).
3. (Preservation of optimal solution.) = minimizes f if and only

if x minimizes M ¢(x) for all ¢ > 0 (even for nonconvex
functions).

4. (Gradient of a Moreau-Envelope) VM, ¢(z) = w

5. (Fixed Point Iteration) z* minimizes f if and only if
r* = prox; r(z*).
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More properties of a Moreau Envelope and Prox Operator

1. (Moreau Decomposition) z = prox (z) + prox s«()
» You can think of it as a generalization of the orthogonal
projection decomposition to a subspace S

x=Tg(x) + Mg (x).

» Combine with the gradients, you have: VM (x) = prox;.(z).

2. (Proximal average) Let f1,..., fi, be closed proper convex
functions, there exists a convex function g, such that

1 m
— Zproxf = Prox,.
M

3. (Non-Expansiveness) prox; is a non-expansion, namely, for all
z,Y

Iprox () — prox(y)||* < (& — y, prox(z) — prox;(y)).
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Operator-theoretic view of a prox operator

Of maps a point z € domf to the set df(x).
(I +t0f)~"is called the resolvent of an operator Of.

Theorem: Consider convex function f (so that the subgradient
exists in the rel-int)

prox, ¢(r) = (I—i—t@f)_l(:v).
Proof: Recall the definition:

prox(z) = argmin, 5|y — z|* + f(y).
By the first order optimality condition z* obeys that

O (@ —x)+0f(a")ereca™+0f(z")=1+0f)(x)

if an only if
ot = (I+0f) 'a.
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Proximal Point Algorithm (aka Proximal Minimization)

To minimize a convex function f. Iterate:

k+1

" = prox;s ().

1. This is a fixed point iteration (note that prox is a
non-expansion).

P = (T4 tdf) " tab.
2. Also, this is a gradient descent on the Moreau Envelope.
" =gy — (I (L+t0f) N)ag = o — tV My(2y,).

Question: Is the learning rate appropriate for the GD to converge?
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Proximal Gradient Algorithm

For minimizing a composition objective f + h

2 = prox,, (a8 — tV £(2)).

1. As a fixed point iteration:
2Pt = (I +toh) L (I — tV f)ay

2. As a Smoothed Majorization-Minimization objective

. 1
o = argmin f(2%) +(Vf (@), y = ") + 5 ly = 2]+ h(y)
Yy

3. The generalized gradient is the gradient of a Moreau-Envelope
of fLinearized + h at xk-
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Summary of Proximal Algorithms

. Proximal point algorithm is to minimize the smoothed version
of a nonsmooth objective using gradient descent.

. Proximal gradient is to combine the idea of local quadratic
approximation (with Majorization-Minimization) with the
Moreau-Yoshida smoothing.

. We can express things in operator-theoretic form as fixed
point iterations.

. If the fixed point iterations are conducted using a contraction
map, then we have linear convergence.
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