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Last time: proximal gradient descent

Consider the problem

min
x

g(x) + h(x)

with g, h convex, g differentiable, and h “simple” in so much as

proxt(x) = argmin
z

1

2t
‖x− z‖22 + h(z)

is computable. Proximal gradient descent: let x(0) ∈ Rn, repeat:

x(k) = proxtk
(
x(k−1) − tk∇g(x(k−1))

)
, k = 1, 2, 3, . . .

Step sizes tk chosen to be fixed and small, or via backtracking

If ∇g is Lipschitz with constant L, then this has convergence rate
O(1/ε). Lastly we can accelerate this, to optimal rate O(1/

√
ε)
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Last time: proximal gradient descent

In the convergence proof (HW2 Q3), we rewrote update as the
following:

x(k) = x(k−1) − tk ·Gtk(x(k−1))

where Gt is the generalized gradient of f , (Nesterov’s Gradient
Mapping!)

Gt(x) =
x− proxt

(
x− t∇g(x)

)

t

Then we more or less followed the convergence proof of the
standard Gradient Descent (Lecture 3).

What is Gt? Is Gt the gradient of some function?

What exactly is the proximal gradient algorithm descent doing?
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Outline

Today:

• Fenchel conjugate

• Prox Operator, Moreau Envelope and Smoothing

• Interpreting proximal algorithms
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(Fenchel) Conjugate function

Given a function f : Rn → R, define its conjugate f∗ : Rn → R,

f∗(y) = max
x

yTx− f(x)

Note that f∗ is always convex, since it is the pointwise maximum
of convex (affine) functions in y (here f need not be convex)3.3 The conjugate function 91

f(x)

(0, −f∗(y))

xy

x

Figure 3.8 A function f : R → R, and a value y ∈ R. The conjugate
function f∗(y) is the maximum gap between the linear function yx and
f(x), as shown by the dashed line in the figure. If f is differentiable, this
occurs at a point x where f ′(x) = y.

3.3.1 Definition and examples

Let f : Rn → R. The function f∗ : Rn → R, defined as

f∗(y) = sup
x∈dom f

(
yT x − f(x)

)
, (3.18)

is called the conjugate of the function f . The domain of the conjugate function
consists of y ∈ Rn for which the supremum is finite, i.e., for which the difference
yT x − f(x) is bounded above on dom f . This definition is illustrated in figure 3.8.

We see immediately that f∗ is a convex function, since it is the pointwise
supremum of a family of convex (indeed, affine) functions of y. This is true whether
or not f is convex. (Note that when f is convex, the subscript x ∈ dom f is not
necessary since, by convention, yT x − f(x) = −∞ for x ̸∈ dom f .)

We start with some simple examples, and then describe some rules for conjugat-
ing functions. This allows us to derive an analytical expression for the conjugate
of many common convex functions.

Example 3.21 We derive the conjugates of some convex functions on R.

• Affine function. f(x) = ax + b. As a function of x, yx − ax − b is bounded if
and only if y = a, in which case it is constant. Therefore the domain of the
conjugate function f∗ is the singleton {a}, and f∗(a) = −b.

• Negative logarithm. f(x) = − log x, with dom f = R++. The function xy+log x
is unbounded above if y ≥ 0 and reaches its maximum at x = −1/y otherwise.
Therefore, dom f∗ = {y | y < 0} = −R++ and f∗(y) = − log(−y)−1 for y < 0.

• Exponential. f(x) = ex. xy − ex is unbounded if y < 0. For y > 0, xy − ex

reaches its maximum at x = log y, so we have f∗(y) = y log y − y. For y = 0,

f∗(y) : maximum gap between
linear function yTx and f(x)

(From B & V page 91)

For differentiable f , conjugation is called the Legendre transform
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Properties:

• Fenchel’s inequality: for any x, y,

f(x) + f∗(y) ≥ xT y

• Conjugate of conjugate f∗∗ satisfies f∗∗ ≤ f
• If f is closed and convex, then f∗∗ = f

• If f is closed and convex, then for any x, y,

x ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x)

⇐⇒ f(x) + f∗(y) = xT y

• If f(u, v) = f1(u) + f2(v), then

f∗(w, z) = f∗1 (w) + f∗2 (z)
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Examples:

• Simple quadratic: let f(x) = 1
2x

TQx, where Q � 0. Then
yTx− 1

2x
TQx is strictly concave in y and is maximized at

y = Q−1x, so

f∗(y) =
1

2
yTQ−1y

• Indicator function: if f(x) = IC(x), then its conjugate is

f∗(y) = I∗C(y) = max
x∈C

yTx

called the support function of C

• Norm: if f(x) = ‖x‖, then its conjugate is

f∗(y) = I{z : ‖z‖∗≤1}(y)

where ‖ · ‖∗ is the dual norm of ‖ · ‖
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Moreau Envelope and Smoothing

We talked about prox operator

proxt,f (x) ∈ argmin
y

1

2t
‖y − x‖2 + f(y).

Note that the output of prox is in the domf .
The Moreau envelope of a function f defined as

Mt,f (x) := min
y

1

2t
‖y − x‖2 + f(y)

=
1

2t
‖proxt,f (x)− x‖2 + f(proxt,f (x)).

The Moreau envelope outputs the optimal objective value.

These quantities can be defined by for general functions but many
of their remarkable properties only apply to convex f .
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Example: Huber function

Coming from robust statistics (Huber, 1964, Annals of Statistics).

Lδ(x) =

{
1
2x

2 if |x| ≤ δ
δ(|x| − 1

2δ) otherwise.

We can rewrite the Huber function as the Moreau Envelope of the
absolute value function | · |.

Mδ|·|(x) = min
y

1

2
(x− y)2 + δ|y|.

Proof.
We know that the argmax is the soft-shresholding operator.
Substitute that into the equation. If |x| > δ, the optimal solution
y∗ = x− δsign(x), and the criterion value is 1

2δ
2 + δ|x| − δ2.

If |x| < δ, the y∗ = 0 and Mδ|·|(x) = 1
2x

2
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Example: Huber function

(Stolen from Yaoliang Yu’s wonderful notes. [Click Here]. )
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Properties of a Moreau Envelope and Prox Operator

1. (Yoshida-Moreau Smoothing) Mt,f (x) of any convex function
is 1/t-smooth. (Need duality to write down a clean proof.)

2. (Preservation of optimal criterion.) minx f(x) = minxMf (x).

3. (Preservation of optimal solution.) x minimizes f if and only
if x minimizes Mt,f (x) for all t > 0 (even for nonconvex
functions).

4. (Gradient of a Moreau-Envelope) ∇Mt,f (x) =
x−proxt,f (x)

t

5. (Fixed Point Iteration) x∗ minimizes f if and only if
x∗ = proxt,f (x∗).
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More properties of a Moreau Envelope and Prox Operator

1. (Moreau Decomposition) x = proxf (x) + proxf∗(x)
I You can think of it as a generalization of the orthogonal

projection decomposition to a subspace S

x = ΠS(x) + ΠS⊥(x).

I Combine with the gradients, you have: ∇Mf (x) = proxf∗(x).

2. (Proximal average) Let f1, ..., fm be closed proper convex
functions, there exists a convex function g, such that

1

m

m∑

i=1

proxf = proxg.

3. (Non-Expansiveness) proxf is a non-expansion, namely, for all
x, y

‖proxf (x)− proxf (y)‖2 ≤ 〈x− y,proxf (x)− proxf (y)〉.
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Operator-theoretic view of a prox operator

∂f maps a point x ∈ domf to the set ∂f(x).
(I + t∂f)−1 is called the resolvent of an operator ∂f .

Theorem: Consider convex function f (so that the subgradient
exists in the rel-int)

proxt,f (x) = (I + t∂f)−1(x).

Proof: Recall the definition:

proxf (x) = argminy
1
2‖y − x‖2 + f(y).

By the first order optimality condition x∗ obeys that

0 ∈ (x∗ − x) + ∂f(x∗)⇔ x ∈ x∗ + ∂f(x∗) = (I + ∂f)(x∗)

if an only if
x∗ = (I + ∂f)−1x.
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Proximal Point Algorithm (aka Proximal Minimization)

To minimize a convex function f . Iterate:

xk+1 = proxtf (xk).

1. This is a fixed point iteration (note that prox is a
non-expansion).

xk+1 = (I + t∂f)−1xk.

2. Also, this is a gradient descent on the Moreau Envelope.

xk+1 = xk − (I− (I + t∂f)−1)xk = xk − t∇Mf (xk).

Question: Is the learning rate appropriate for the GD to converge?
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Proximal Gradient Algorithm

For minimizing a composition objective f + h

xk+1 = proxth(xk − t∇f(xk)).

1. As a fixed point iteration:

xk+1 = (I + t∂h)−1(I − t∇f)xk

2. As a Smoothed Majorization-Minimization objective

xk+1 = argmin
y

f(xk)+〈∇f(xk), y−xk〉+ 1

2t
‖y−xk‖2 +h(y)

3. The generalized gradient is the gradient of a Moreau-Envelope
of fLinearized + h at xk.
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Summary of Proximal Algorithms

1. Proximal point algorithm is to minimize the smoothed version
of a nonsmooth objective using gradient descent.

2. Proximal gradient is to combine the idea of local quadratic
approximation (with Majorization-Minimization) with the
Moreau-Yoshida smoothing.

3. We can express things in operator-theoretic form as fixed
point iterations.

4. If the fixed point iterations are conducted using a contraction
map, then we have linear convergence.
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