
Stochastic Subgradient Methods

Yu-Xiang Wang
CS292A

(Based on Ryan Tibshirani’s 10-725)

Last time: proximal map, Moreau envelope, interpretations
of proximal algorithms

1. Properties of proxf and Mf .
I Moreau decomposition: proxf + proxf∗ = I.

I Gradient: ∇Mt,f (x) =
x−proxt,f (x)

t .

2. Two interpretations of the proximal point algorithm for
minimizing f
I Fixed point iterations: xk+1 = (I + t∂f)−1xk.
I Gradient Descent on Moreau Envelope:

xk+1 = xk − t∇Mf (xk).

3. Two interpretation of the proximal gradient algorithm f + g.
I Majorization-minimization.
I Gradient Descent on Moreau Envelope of a locally linearized

objective,
I Fixed Point iterations

2

Outline

Today:

• Stochastic subgradient descent

• Convergence rates

• Mini-batches

• Early stopping

3

Stochastic gradient descent

Consider minimizing an average of functions

min
x

1

m

m∑
i=1

fi(x)

As ∇
∑m

i=1 fi(x) =
∑m

i=1∇fi(x), gradient descent would repeat:

x(k) = x(k−1) − tk ·
1

m

m∑
i=1

∇fi(x(k−1)), k = 1, 2, 3, . . .

In comparison, stochastic gradient descent or SGD (or incremental
gradient method) repeats:

x(k) = x(k−1) − tk · ∇fik(x(k−1)), k = 1, 2, 3, . . .

where ik ∈ {1, . . .m} is some chosen index at iteration k.
(Robbins and Monro, 1951, Annals of Mathematical Statistics)

4

Two rules for choosing index ik at iteration k:

• Randomized rule: choose ik ∈ {1, . . .m} uniformly at random

• Cyclic rule: choose ik = 1, 2, . . .m, 1, 2, . . .m, . . .

Randomized rule is more common in practice. For randomized rule,
note that

E[∇fik(x)] = ∇f(x)

so we can view SGD as using an unbiased estimate of the gradient
at each step

Main appeal of SGD:

• Iteration cost is independent of m (number of functions)

• Can also be a big savings in terms of memory useage

5

Example: stochastic logistic regression

Given (xi, yi) ∈ Rp × {0, 1}, i = 1, . . . n, recall logistic regression:

min
β

f(β) =
1

n

n∑
i=1

(
− yixTi β + log(1 + exp(xTi β))

)
︸ ︷︷ ︸

fi(β)

Gradient computation ∇f(β) = 1
n

∑n
i=1

(
yi − pi(β)

)
xi is doable

when n is moderate, but not when n is huge

Full gradient (also called batch) versus stochastic gradient:

• One batch update costs O(np)

• One stochastic update costs O(p)

Clearly, e.g., 10K stochastic steps are much more affordable

6

Small example with n = 10, p = 2 to show the “classic picture” for
batch versus stochastic methods:

−20 −10 0 10 20

−
20

−
10

0
10

20

●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●
●●
●●
●●●
●●●
●●●
●●●●
●●

●
●●

●●

●
●

●
●●

●●●

●●
●

●

●●●
●

●
●

●
●
●●

●

●
●●●

●●
●
●●

●● ●
●●●●●

●●●

●●*

●

●

Batch
Random

Blue: batch steps, O(np)
Red: stochastic steps, O(p)

Rule of thumb for stochastic
methods:

• generally thrive far
from optimum

• generally struggle close
to optimum

7

Step sizes

Standard in SGD is to use diminishing step sizes, e.g., tk = 1/k,
for k = 1, 2, 3, . . .

Why not fixed step sizes? Here’s some intuition. Suppose we take
cyclic rule for simplicity. Set tk = t for m updates in a row, we get:

x(k+m) = x(k) − t
m∑
i=1

∇fi(x(k+i−1))

Meanwhile, full gradient with step size t would give:

x(k+1) = x(k) − t
m∑
i=1

∇fi(x(k))

The difference here: t
∑m

i=1[∇fi(x(k+i−1))−∇fi(x(k))], and if we
hold t constant, this difference will not generally be going to zero

8

Convergence rates

Recall: for convex f , gradient descent with diminishing step sizes
satisfies

f(x(k))− f? = O(1/
√
k)

When f is differentiable with Lipschitz gradient, we get for suitable
fixed step sizes

f(x(k))− f? = O(1/k)

What about SGD? For convex f , SGD with diminishing step sizes
satisfies1

E[f(x(k))]− f? = O(log(k)/
√
k)

Unfortunately this almost does not improve2 when we further
assume f has Lipschitz gradient.

1E.g., Shamir and Zhang, ICML’2012.
2We may improve a log k factor when assuming smoothness. But there are

algorithms that is not the last iterate of SGD that does not need the log k
factor in the first place even without smoothness.

9

Even worse is the following discrepancy!

When f is strongly convex and has a Lipschitz gradient, gradient
descent satisfies

f(x(k))− f? = O(ck)

where c < 1. But under same conditions, SGD gives us3

E[f(x(k))]− f? = O(log k/k)

So stochastic methods do not enjoy the linear convergence rate of
gradient descent under strong convexity.

What can we do to improve SGD?

3E.g., Shamir and Zhang, ICML’2012.
10

Mini-batches

Also common is mini-batch stochastic gradient descent, where we
choose a random subset Ik ⊆ {1, . . .m}, of size |Ik| = b� m, and
repeat:

x(k) = x(k−1) − tk ·
1

b

∑
i∈Ik

∇fi(x(k−1)), k = 1, 2, 3, . . .

Again, we are approximating full graident by an unbiased estimate:

E
[

1

b

∑
i∈Ik

∇fi(x)

]
= ∇f(x)

Using mini-batches reduces the variance of our gradient estimate
by a factor 1/b, but is also b times more expensive

11

Back to logistic regression, let’s now consider a regularized version:

min
β∈Rp

1

n

n∑
i=1

(
− yixTi β + log(1 + ex

T
i β)
)

+
λ

2
‖β‖22

Write the criterion as

f(β) =
1

n

n∑
i=1

fi(β), fi(β) = −yixTi β + log(1 + ex
T
i β) +

λ

2
‖β‖22

Full gradient computation is ∇f(β) = 1
n

∑n
i=1

(
yi− pi(β)

)
xi +λβ.

Comparison between methods:

• One batch update costs O(np)

• One mini-batch update costs O(bp)

• One stochastic update costs O(p)

12

Example with n = 10, 000, p = 20, all methods use fixed step sizes:

0 10 20 30 40 50

0.
50

0.
55

0.
60

0.
65

Iteration number k

C
rit

er
io

n
fk

Full
Stochastic
Mini−batch, b=10
Mini−batch, b=100

13

What’s happening? Now let’s parametrize by flops:

1e+02 1e+04 1e+06

0.
50

0.
55

0.
60

0.
65

Flop count

C
rit

er
io

n
fk

Full
Stochastic
Mini−batch, b=10
Mini−batch, b=100

14

Finally, looking at suboptimality gap (on log scale):

0 10 20 30 40 50

1e
−

12
1e

−
09

1e
−

06
1e

−
03

Iteration number k

C
rit

er
io

n
ga

p
fk

−
fs

ta
r

Full
Stochastic
Mini−batch, b=10
Mini−batch, b=100

15

Convergence rate proofs

Algorithm: xk+1 = xk − tkgk.
Assumptions: (1) Unbiased subgradient: E[gk|xk] ∈ ∂f(xk).
(2) Bounded variance: E[‖gk − E[gk|xk]‖2|xk] ≤ σ2

• Convex and G-Lipschitz (Proof this!)

min
i=1,...,k

E
[
f(xi)

]
− f∗ ≤

‖x1 − x∗‖2 + (G2 + σ2)
∑k

i=1 t
2
i

2
∑k

i=1 ti

• Nonconvex but L-smooth with ti = 1/(
√
kL) (Proof this!)

E

[
1

k

k∑
i=1

‖∇f(xi)‖2
]
≤ 2(f(x1)− f∗)L+ σ2√

k

• m-Strongly convex and G-Lipschitz: O(G2 log(T)/mT) rate.
we will prove this when we talk about online learning!

16

Averaging Stochastic (Sub)gradient Descent
One drawbacks of SGD: the guarantees are for
mini=1,...,k E

[
f(xi)

]
.

Idea: Let’s output the online averages of the iterates.

x̄k =
k − 1

k
x̄k−1 +

1

k
xk(Polyak-Rupert Averaging)4

Convergence bound:

E[f(x̄k)]− f∗ ≤

{
O(1/

√
k) if convex (We just proved that!)5

O(log k/k) if strongly convex

Can the log k be removed? No. Use α-Suffix averaging. (Rakhlin,
Shamir, Sridharan, ICML’2012)
But that doesn’t have an online implementation. Solution by
(Shamir and Zhang, ICML’2013) : x̄kη = (1− 1+η

k+η)x̄k−1η + 1+η
k+ηx

k.
4See, Polyak,1990; Rupert,1988; Polyak and Juditsky, 1992.
5Using ideas from Nemirovski et al. (2009).

17

ASGD Comparison in Practice

(Figure from Leon Bottou, 2010)

18

Stochastic Programming

Stochastic programming:

minimize
x

Ef(x)

where the expectation is taken over f f is a random function of x.
More generally,

minimize
x

Ef(x), Subject to Eg(x) ≤ 0.

Chance constrained stochastic progamming:

minimize
x

Ef(x) Subject to ,P(gi(x) ≤ 0) ≥ η.

19

Stochastic Programming: Examples

1. Machine Learning / Stochastic Convex Optimization

minimize
h∈H

E(x,y)∼D[`(h, (x, y))]

where ` is a loss function, H is a hypothesis class (a class of
classifiers), x, y are feature and label pairs.

2. Portfolio Optimization with Value At Risk (VaR) constraint.

max
x:x≥0,

∑
i xi= Budget

E

[∑
i

Rixi

]
,

Subject to P

(∑
i

Rixi ≤ −$1 Million

)
≤ 0.05

where Ri is the return of Stock i, xi are the allocated budget
in the portfolio.

20

Optimality Guarantees of SGD

Under the gradient oracle: E[gi] = ∇Ef(x), let us minimize the
following stochastic objective over θ̂ ∈ R

EX∼N (µ,σ2)[(θ −X)2] = (θ − µ)2 + σ2.

This function is 1-strongly convex in θ̂. The observation is
X1, ..., Xn ∼ N (µ, σ2), equivalent to observing a stochastic
gradient θ −Xi, which approximates the gradient θ − µ.
Theorem: Any algorithm µ̂ that takes random variables
X1, ..., Xn as an input obeys that:

max
θ∈R

E[(µ̂− µ)2] ≥ σ2

n
If we can solve the stochastic progamming problems, then we can
solve the estimation problem beyond its information-theoretic limit.

21

Optimality Guarantees of SGD

Similarly, consider

min
θ∈[−1,1]

E[Xθ] = pθ − (1− p)θ = (−1 + 2p)θ

where P(X = 1) = p and P(X = −1) = 1− p.
This is a convex and 1-Lipschitz objective. Observing samples
X1, ..., Xn from that distribution can be considered stochastic
gradient.s
Statistical lower bound 1/

√
n on estimating p suggest that we

cannot distinguish between the world when p = 0.5− 1/
√
n and

the world when p = 0.5 + 1/
√
n, which implies a lower bound of

1/
√
k for the convergence rate of SGD for non-strongly convex

stochastic objective.

22

End of the story?
Short story:

• SGD can be super effective in terms of iteration cost, memory
• But SGD is slow to converge, can’t adapt to strong convexity
• And mini-batches seem to be a wash in terms of flops (though

they can still be useful in practice)
• Averaging trick helps to remove log k terms in cases without

smoothness.
• Lower bound from stochastic programming that says 1/

√
k is

optimal in general and 1/k for strongly convex.

Is this the end of the story for SGD?

For a while, the answer was believed to be yes. But this was for a
more general stochastic optimization problem, where
f(x) =

∫
F (x, ξ) dP (ξ).

New wave of “variance reduction” work shows we can modify SGD
to converge much faster for finite sums (more later?)

23

SGD in large-scale ML

SGD has really taken off in large-scale machine learning

• In many ML problems we don’t care about optimizing to high
accuracy, it doesn’t pay off in terms of statistical performance

• Thus (in contrast to what classic theory says) fixed step sizes
are commonly used in ML applications

• One trick is to experiment with step sizes using small fraction
of training before running SGD on full data set ... many other
heuristics are common6

• Many variants provide better practical stability, convergence:
momentum, acceleration, averaging, coordinate-adapted step
sizes, variance reduction ...

• See AdaGrad, Adam, AdaMax, SVRG, SAG, SAGA ... (more
later?)

6E.g., Bottou (2012), “Stochastic gradient descent tricks”
24

Early stopping

Suppose p is large and we wanted to fit (say) a logistic regression
model to data (xi, yi) ∈ Rp × {0, 1}, i = 1, . . . n

We could solve (say) `2 regularized logistic regression:

min
β∈Rp

1

n

n∑
i=1

(
− yixTi β + log(1 + ex

T
i β)
)

subject to ‖β‖2 ≤ t

We could also run gradient descent on the unregularized problem:

min
β∈Rp

1

n

n∑
i=1

(
− yixTi β + log(1 + ex

T
i β)
)

and stop early, i.e., terminate gradient descent well-short of the
global minimum

25

Consider the following, for a very small constant step size ε:

• Start at β(0) = 0, solution to regularized problem at t = 0

• Perform gradient descent on unregularized criterion

β(k) = β(k−1) − ε · 1

n

n∑
i=1

(yi − pi(β(k−1)))xi, k = 1, 2, 3, . . .

(we could equally well consider SGD)

• Treat β(k) as an approximate solution to regularized problem
with t = ‖β(k)‖2

This is called early stopping for gradient descent. Why would we
ever do this? It’s both more convenient and potentially much more
efficient than using explicit regularization

26

An intruiging connection

When we solve the `2 regularized logistic problem for varying t ...
solution path looks quite similar to gradient descent path!

Example with p = 8, solution and grad descent paths side by side:

0.0 0.5 1.0 1.5

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

Ridge logistic path

C
o

o
rd

in
a

te
s

g(β̂(t))

0.0 0.5 1.0 1.5

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

Stagewise path

g(β(k))

C
o
or

d
in

at
es

27

Lots left to explore

• Connection holds beyond logistic regression, for arbitrary loss

• In general, the grad descent path will not coincide with the `2
regularized path (as ε→ 0). Though in practice, it seems to
give competitive statistical performance

• Can extend early stopping idea to mimick a generic regularizer
(beyond `2)7

• There is a lot of literature on early stopping, but it’s still not
as well-understood as it should be

• Early stopping is just one instance of implicit or algorithmic
regularization ... many others are effective in large-scale ML,
they all should be better understood

7Tibshirani (2015), “A general framework for fast stagewise algorithms”
28

References and further reading

• D. Bertsekas (2010), “Incremental gradient, subgradient, and
proximal methods for convex optimization: a survey”

• A. Nemirovski and A. Juditsky and G. Lan and A. Shapiro
(2009), “Robust stochastic optimization approach to
stochastic programming”

• O. Shamir, T. Zhang. (2013). “Stochastic gradient descent
for non-smooth optimization: Convergence results and
optimal averaging schemes”. In International Conference on
Machine Learning.

• R. Tibshirani (2015), “A general framework for fast stagewise
algorithms”

29

