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Last time: proximal map, Moreau envelope, interpretations
of proximal algorithms

1. Properties of proxf and Mf .
I Moreau decomposition: proxf + proxf∗ = I.

I Gradient: ∇Mt,f (x) =
x−proxt,f (x)

t .

2. Two interpretations of the proximal point algorithm for
minimizing f
I Fixed point iterations: xk+1 = (I + t∂f)−1xk.
I Gradient Descent on Moreau Envelope:

xk+1 = xk − t∇Mf (xk).

3. Two interpretation of the proximal gradient algorithm f + g.
I Majorization-minimization.
I Gradient Descent on Moreau Envelope of a locally linearized

objective,
I Fixed Point iterations
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Outline

Today:

• Stochastic subgradient descent

• Convergence rates

• Mini-batches

• Early stopping
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Stochastic gradient descent

Consider minimizing an average of functions

min
x

1

m

m∑
i=1

fi(x)

As ∇
∑m

i=1 fi(x) =
∑m

i=1∇fi(x), gradient descent would repeat:

x(k) = x(k−1) − tk ·
1

m

m∑
i=1

∇fi(x(k−1)), k = 1, 2, 3, . . .

In comparison, stochastic gradient descent or SGD (or incremental
gradient method) repeats:

x(k) = x(k−1) − tk · ∇fik(x(k−1)), k = 1, 2, 3, . . .

where ik ∈ {1, . . .m} is some chosen index at iteration k.
(Robbins and Monro, 1951, Annals of Mathematical Statistics)
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Two rules for choosing index ik at iteration k:

• Randomized rule: choose ik ∈ {1, . . .m} uniformly at random

• Cyclic rule: choose ik = 1, 2, . . .m, 1, 2, . . .m, . . .

Randomized rule is more common in practice. For randomized rule,
note that

E[∇fik(x)] = ∇f(x)

so we can view SGD as using an unbiased estimate of the gradient
at each step

Main appeal of SGD:

• Iteration cost is independent of m (number of functions)

• Can also be a big savings in terms of memory useage
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Example: stochastic logistic regression

Given (xi, yi) ∈ Rp × {0, 1}, i = 1, . . . n, recall logistic regression:

min
β

f(β) =
1

n

n∑
i=1

(
− yixTi β + log(1 + exp(xTi β))

)
︸ ︷︷ ︸

fi(β)

Gradient computation ∇f(β) = 1
n

∑n
i=1

(
yi − pi(β)

)
xi is doable

when n is moderate, but not when n is huge

Full gradient (also called batch) versus stochastic gradient:

• One batch update costs O(np)

• One stochastic update costs O(p)

Clearly, e.g., 10K stochastic steps are much more affordable
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Small example with n = 10, p = 2 to show the “classic picture” for
batch versus stochastic methods:
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Blue: batch steps, O(np)
Red: stochastic steps, O(p)

Rule of thumb for stochastic
methods:

• generally thrive far
from optimum

• generally struggle close
to optimum
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Step sizes

Standard in SGD is to use diminishing step sizes, e.g., tk = 1/k,
for k = 1, 2, 3, . . .

Why not fixed step sizes? Here’s some intuition. Suppose we take
cyclic rule for simplicity. Set tk = t for m updates in a row, we get:

x(k+m) = x(k) − t
m∑
i=1

∇fi(x(k+i−1))

Meanwhile, full gradient with step size t would give:

x(k+1) = x(k) − t
m∑
i=1

∇fi(x(k))

The difference here: t
∑m

i=1[∇fi(x(k+i−1))−∇fi(x(k))], and if we
hold t constant, this difference will not generally be going to zero
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Convergence rates

Recall: for convex f , gradient descent with diminishing step sizes
satisfies

f(x(k))− f? = O(1/
√
k)

When f is differentiable with Lipschitz gradient, we get for suitable
fixed step sizes

f(x(k))− f? = O(1/k)

What about SGD? For convex f , SGD with diminishing step sizes
satisfies1

E[f(x(k))]− f? = O(log(k)/
√
k)

Unfortunately this almost does not improve2 when we further
assume f has Lipschitz gradient.

1E.g., Shamir and Zhang, ICML’2012.
2We may improve a log k factor when assuming smoothness. But there are

algorithms that is not the last iterate of SGD that does not need the log k
factor in the first place even without smoothness.
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Even worse is the following discrepancy!

When f is strongly convex and has a Lipschitz gradient, gradient
descent satisfies

f(x(k))− f? = O(ck)

where c < 1. But under same conditions, SGD gives us3

E[f(x(k))]− f? = O(log k/k)

So stochastic methods do not enjoy the linear convergence rate of
gradient descent under strong convexity.

What can we do to improve SGD?

3E.g., Shamir and Zhang, ICML’2012.
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Mini-batches

Also common is mini-batch stochastic gradient descent, where we
choose a random subset Ik ⊆ {1, . . .m}, of size |Ik| = b� m, and
repeat:

x(k) = x(k−1) − tk ·
1

b

∑
i∈Ik

∇fi(x(k−1)), k = 1, 2, 3, . . .

Again, we are approximating full graident by an unbiased estimate:

E
[

1

b

∑
i∈Ik

∇fi(x)

]
= ∇f(x)

Using mini-batches reduces the variance of our gradient estimate
by a factor 1/b, but is also b times more expensive
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Back to logistic regression, let’s now consider a regularized version:

min
β∈Rp

1

n

n∑
i=1

(
− yixTi β + log(1 + ex

T
i β)
)

+
λ

2
‖β‖22

Write the criterion as

f(β) =
1

n

n∑
i=1

fi(β), fi(β) = −yixTi β + log(1 + ex
T
i β) +

λ

2
‖β‖22

Full gradient computation is ∇f(β) = 1
n

∑n
i=1

(
yi− pi(β)

)
xi +λβ.

Comparison between methods:

• One batch update costs O(np)

• One mini-batch update costs O(bp)

• One stochastic update costs O(p)
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Example with n = 10, 000, p = 20, all methods use fixed step sizes:
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What’s happening? Now let’s parametrize by flops:
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Finally, looking at suboptimality gap (on log scale):
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Convergence rate proofs

Algorithm: xk+1 = xk − tkgk.
Assumptions: (1) Unbiased subgradient: E[gk|xk] ∈ ∂f(xk).
(2) Bounded variance: E[‖gk − E[gk|xk]‖2|xk] ≤ σ2

• Convex and G-Lipschitz (Proof this!)

min
i=1,...,k

E
[
f(xi)

]
− f∗ ≤

‖x1 − x∗‖2 + (G2 + σ2)
∑k

i=1 t
2
i

2
∑k

i=1 ti

• Nonconvex but L-smooth with ti = 1/(
√
kL) (Proof this!)

E

[
1

k

k∑
i=1

‖∇f(xi)‖2
]
≤ 2(f(x1)− f∗)L+ σ2√

k

• m-Strongly convex and G-Lipschitz: O(G2 log(T )/mT ) rate.
we will prove this when we talk about online learning!
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Averaging Stochastic (Sub)gradient Descent
One drawbacks of SGD: the guarantees are for
mini=1,...,k E

[
f(xi)

]
.

Idea: Let’s output the online averages of the iterates.

x̄k =
k − 1

k
x̄k−1 +

1

k
xk(Polyak-Rupert Averaging)4

Convergence bound:

E[f(x̄k)]− f∗ ≤

{
O(1/

√
k) if convex (We just proved that!)5

O(log k/k) if strongly convex

Can the log k be removed? No. Use α-Suffix averaging. (Rakhlin,
Shamir, Sridharan, ICML’2012)
But that doesn’t have an online implementation. Solution by
(Shamir and Zhang, ICML’2013) : x̄kη = (1− 1+η

k+η )x̄k−1η + 1+η
k+ηx

k.
4See, Polyak,1990; Rupert,1988; Polyak and Juditsky, 1992.
5Using ideas from Nemirovski et al. (2009).
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ASGD Comparison in Practice

(Figure from Leon Bottou, 2010)
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Stochastic Programming

Stochastic programming:

minimize
x

Ef(x)

where the expectation is taken over f f is a random function of x.
More generally,

minimize
x

Ef(x), Subject to Eg(x) ≤ 0.

Chance constrained stochastic progamming:

minimize
x

Ef(x) Subject to ,P(gi(x) ≤ 0) ≥ η.
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Stochastic Programming: Examples

1. Machine Learning / Stochastic Convex Optimization

minimize
h∈H

E(x,y)∼D[`(h, (x, y))]

where ` is a loss function, H is a hypothesis class (a class of
classifiers), x, y are feature and label pairs.

2. Portfolio Optimization with Value At Risk (VaR) constraint.

max
x:x≥0,

∑
i xi= Budget

E

[∑
i

Rixi

]
,

Subject to P

(∑
i

Rixi ≤ −$1 Million

)
≤ 0.05

where Ri is the return of Stock i, xi are the allocated budget
in the portfolio.
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Optimality Guarantees of SGD

Under the gradient oracle: E[gi] = ∇Ef(x), let us minimize the
following stochastic objective over θ̂ ∈ R

EX∼N (µ,σ2)[(θ −X)2] = (θ − µ)2 + σ2.

This function is 1-strongly convex in θ̂. The observation is
X1, ..., Xn ∼ N (µ, σ2), equivalent to observing a stochastic
gradient θ −Xi, which approximates the gradient θ − µ.
Theorem: Any algorithm µ̂ that takes random variables
X1, ..., Xn as an input obeys that:

max
θ∈R

E[(µ̂− µ)2] ≥ σ2

n
If we can solve the stochastic progamming problems, then we can
solve the estimation problem beyond its information-theoretic limit.
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Optimality Guarantees of SGD

Similarly, consider

min
θ∈[−1,1]

E[Xθ] = pθ − (1− p)θ = (−1 + 2p)θ

where P(X = 1) = p and P(X = −1) = 1− p.
This is a convex and 1-Lipschitz objective. Observing samples
X1, ..., Xn from that distribution can be considered stochastic
gradient.s
Statistical lower bound 1/

√
n on estimating p suggest that we

cannot distinguish between the world when p = 0.5− 1/
√
n and

the world when p = 0.5 + 1/
√
n, which implies a lower bound of

1/
√
k for the convergence rate of SGD for non-strongly convex

stochastic objective.
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End of the story?
Short story:

• SGD can be super effective in terms of iteration cost, memory
• But SGD is slow to converge, can’t adapt to strong convexity
• And mini-batches seem to be a wash in terms of flops (though

they can still be useful in practice)
• Averaging trick helps to remove log k terms in cases without

smoothness.
• Lower bound from stochastic programming that says 1/

√
k is

optimal in general and 1/k for strongly convex.

Is this the end of the story for SGD?

For a while, the answer was believed to be yes. But this was for a
more general stochastic optimization problem, where
f(x) =

∫
F (x, ξ) dP (ξ).

New wave of “variance reduction” work shows we can modify SGD
to converge much faster for finite sums (more later?)
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SGD in large-scale ML

SGD has really taken off in large-scale machine learning

• In many ML problems we don’t care about optimizing to high
accuracy, it doesn’t pay off in terms of statistical performance

• Thus (in contrast to what classic theory says) fixed step sizes
are commonly used in ML applications

• One trick is to experiment with step sizes using small fraction
of training before running SGD on full data set ... many other
heuristics are common6

• Many variants provide better practical stability, convergence:
momentum, acceleration, averaging, coordinate-adapted step
sizes, variance reduction ...

• See AdaGrad, Adam, AdaMax, SVRG, SAG, SAGA ... (more
later?)

6E.g., Bottou (2012), “Stochastic gradient descent tricks”
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Early stopping

Suppose p is large and we wanted to fit (say) a logistic regression
model to data (xi, yi) ∈ Rp × {0, 1}, i = 1, . . . n

We could solve (say) `2 regularized logistic regression:

min
β∈Rp

1

n

n∑
i=1

(
− yixTi β + log(1 + ex

T
i β)
)

subject to ‖β‖2 ≤ t

We could also run gradient descent on the unregularized problem:

min
β∈Rp

1

n

n∑
i=1

(
− yixTi β + log(1 + ex

T
i β)
)

and stop early, i.e., terminate gradient descent well-short of the
global minimum
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Consider the following, for a very small constant step size ε:

• Start at β(0) = 0, solution to regularized problem at t = 0

• Perform gradient descent on unregularized criterion

β(k) = β(k−1) − ε · 1

n

n∑
i=1

(yi − pi(β(k−1)))xi, k = 1, 2, 3, . . .

(we could equally well consider SGD)

• Treat β(k) as an approximate solution to regularized problem
with t = ‖β(k)‖2

This is called early stopping for gradient descent. Why would we
ever do this? It’s both more convenient and potentially much more
efficient than using explicit regularization
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An intruiging connection

When we solve the `2 regularized logistic problem for varying t ...
solution path looks quite similar to gradient descent path!

Example with p = 8, solution and grad descent paths side by side:
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Lots left to explore

• Connection holds beyond logistic regression, for arbitrary loss

• In general, the grad descent path will not coincide with the `2
regularized path (as ε→ 0). Though in practice, it seems to
give competitive statistical performance

• Can extend early stopping idea to mimick a generic regularizer
(beyond `2)7

• There is a lot of literature on early stopping, but it’s still not
as well-understood as it should be

• Early stopping is just one instance of implicit or algorithmic
regularization ... many others are effective in large-scale ML,
they all should be better understood

7Tibshirani (2015), “A general framework for fast stagewise algorithms”
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