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Last time: stochastic gradient descent

Consider

min
x

1

m

m∑
i=1

fi(x)

Stochastic gradient descent or SGD: let x(0) ∈ Rn, repeat:

x(k) = x(k−1) − tk · ∇fik(x(k−1)), k = 1, 2, 3, . . .

where ik ∈ {1, . . .m} is chosen uniformly at random. Step sizes tk
chosen to be fixed and small, or diminishing

Compare to full gradient, which would use 1
m

∑m
i=1∇fi(x). Upside

of SGD: much (potentially much, much) cheaper iterations,
optimal for stochastic optimization.

Downside: can be slow to converge, suboptimal for finite sum
problems (Next Thursday!)
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Lower bounds in linear programs

Suppose we want to find lower bound on the optimal value in our
convex problem, B ≤ minx f(x)

E.g., consider the following simple LP

min
x,y

x+ y

subject to x+ y ≥ 2

x, y ≥ 0

What’s a lower bound? Easy, take B = 2

But didn’t we get “lucky”?
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Try again:

min
x,y

x+ 3y

subject to x+ y ≥ 2

x, y ≥ 0

x+ y ≥ 2

+ 2y ≥ 0

= x+ 3y ≥ 2

Lower bound B = 2

More generally:

min
x,y

px+ qy

subject to x+ y ≥ 2

x, y ≥ 0

a+ b = p

a+ c = q

a, b, c ≥ 0

Lower bound B = 2a, for any
a, b, c satisfying above
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What’s the best we can do? Maximize our lower bound over all
possible a, b, c:

min
x,y

px+ qy

subject to x+ y ≥ 2

x, y ≥ 0

Called primal LP

max
a,b,c

2a

subject to a+ b = p

a+ c = q

a, b, c ≥ 0

Called dual LP

Note: number of dual variables is number of primal constraints
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Try another one:

min
x,y

px+ qy

subject to x ≥ 0

y ≤ 1

3x+ y = 2

Primal LP

max
a,b,c

2c− b

subject to a+ 3c = p

− b+ c = q

a, b ≥ 0

Dual LP

Note: in the dual problem, c is unconstrained
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Outline

Today:

• Duality in LP

• Examples (Max-Flow Min-Cut, Minimax Theorem)

• Lagrange Duality in General Convex Programs

• Examples (QP, SVM)
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Duality for general form LP

Given c ∈ Rn, A ∈ Rm×n, b ∈ Rm, G ∈ Rr×n, h ∈ Rr:

min
x

cTx

subject to Ax = b

Gx ≤ h

Primal LP

max
u,v

− bTu− hT v

subject to −ATu−GT v = c

v ≥ 0

Dual LP

Explanation: for any u and v ≥ 0, and x primal feasible,

uT (Ax− b) + vT (Gx− h) ≤ 0, i.e.,

(−ATu−GT v)Tx ≥ −bTu− hT v

So if c = −ATu−GT v, we get a bound on primal optimal value
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Example: max flow and min cut

Soviet railway network (from Schrijver (2002), “On the history of
transportation and maximum flow problems”)
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s

t

fij
cij

Given graph G = (V,E), define flow fij ,
(i, j) ∈ E to satisfy:

• fij ≥ 0, (i, j) ∈ E
• fij ≤ cij , (i, j) ∈ E
•

∑
(i,k)∈E

fik =
∑

(k,j)∈E

fkj , k ∈ V \{s, t}

Max flow problem: find flow that maximizes total value of the flow
from s to t. I.e., as an LP:

max
f∈R|E|

∑
(s,j)∈E

fsj

subject to 0 ≤ fij ≤ cij for all (i, j) ∈ E∑
(i,k)∈E

fik =
∑

(k,j)∈E

fkj for all k ∈ V \ {s, t}
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Follow the steps before, just flip the logic:
Find the tightest upper bound of the objective by taking linear
combinations of the constraints, subject to the constraints from
the primal objective’s coefficients.

Dual LP of max flow: The dual problem is (minimize over b, x to
get best upper bound):

min
b∈R|E|, x∈R|V |

∑
(i,j)∈E

bijcij

subject to bij + xj − xi ≥ 0 for all (i, j) ∈ E
b ≥ 0, xs = 1, xt = 0
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Suppose that at the solution, it just so happened that

xi ∈ {0, 1} for all i ∈ V
Let A = {i : xi = 1}, B = {i : xi = 0}; note s ∈ A, t ∈ B. Then

bij ≥ xi − xj for (i, j) ∈ E, b ≥ 0

imply that bij = 1 if i ∈ A and j ∈ B, and 0 otherwise. Moreover,
the objective

∑
(i,j)∈E bijcij is the capacity of cut defined by A,B

I.e., we’ve argued that the dual is
the LP relaxation of the min cut
problem:

min
b∈R|E|, x∈R|V |

∑
(i,j)∈E

bijcij

subject to bij ≥ xi − xj
bij , xi, xj ∈ {0, 1}
for all i, j
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Therefore, from what we know so far:

value of max flow ≤
optimal value for LP relaxed min cut ≤

capacity of min cut

Famous result, called max flow min cut theorem: value of max flow
through a network is exactly the capacity of the min cut

Hence in the above, we get all equalities. In particular, we get that
the primal LP and dual LP have exactly the same optimal values, a
phenomenon called strong duality

How often does this happen? More on this soon
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Another perspective on LP duality

min
x

cTx

subject to Ax = b

Gx ≤ h

Primal LP

max
u,b

− bTu− hT v

subject to −ATu−GT v = c

v ≥ 0

Dual LP

Explanation # 2: for any u and v ≥ 0, and x primal feasible

cTx ≥ cTx+ uT (Ax− b) + vT (Gx− h) := L(x, u, v)

So if C denotes primal feasible set, f? primal optimal value, then
for any u and v ≥ 0,

f? ≥ min
x∈C

L(x, u, v) ≥ min
x

L(x, u, v) := g(u, v)
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In other words, g(u, v) is a lower bound on f? for any u and v ≥ 0

Note that

g(u, v) =

{
−bTu− hT v if c = −ATu−GT v
−∞ otherwise

Now we can maximize g(u, v) over u and v ≥ 0 to get the tightest
bound, and this gives exactly the dual LP as before

This last perspective is actually completely general and applies to
arbitrary optimization problems (even nonconvex ones)
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Example: mixed strategies for matrix games

Setup: two players, vs. , and a payout matrix P

R

J

1 2 . . . n
1 P11 P12 . . . P1n

2 P21 P22 . . . P2n

. . .
m Pm1 Pm2 . . . Pmn

Game: if J chooses i and
R chooses j, then J must
pay R amount Pij (don’t
feel bad for J—this can be
positive or negative)

They use mixed strategies, i.e., each will first specify a probability
distribution, and then

x : P(J chooses i) = xi, i = 1, . . .m

y : P(R chooses j) = yj , j = 1, . . . n
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The expected payout then, from J to R, is

m∑
i=1

n∑
j=1

xiyjPij = xTPy

Now suppose that, because J is wiser, he will allow R to know his
strategy x ahead of time. In this case, R will choose y to maximize
xTPy, which results in J paying off

max {xTPy : y ≥ 0, 1T y = 1} = max
i=1,...n

(P Tx)i

J’s best strategy is then to choose his distribution x according to

min
x

max
i=1,...n

(P Tx)i

subject to x ≥ 0, 1Tx = 1
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In an alternate universe, if R were somehow wiser than J, then he
might allow J to know his strategy y beforehand

By the same logic, R’s best strategy is to choose his distribution y
according to

max
y

min
j=1,...m

(Py)j

subject to y ≥ 0, 1T y = 1

Call R’s expected payout in first scenario f?1 , and expected payout
in second scenario f?2 . Because it is clearly advantageous to know
the other player’s strategy, f?1 ≥ f?2

But by Von Neumman’s minimax theorem: we know that f?1 = f?2
... which may come as a surprise!
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Recast first problem as an LP:

min
x,t

t

subject to x ≥ 0, 1Tx = 1

P Tx ≤ t

Now form what we call the Lagrangian:

L(x, t, u, v, y) = t− uTx+ v(1− 1Tx) + yT (P Tx− t1)

and what we call the Lagrange dual function:

g(u, v, y) = min
x,t

L(x, t, u, v, y)

=

{
v if 1− 1T y = 0, Py − u− v1 = 0

−∞ otherwise

19



Hence dual problem, after eliminating slack variable u, is

max
y,v

v

subject to y ≥ 0, 1T y = 1

Py ≥ v

This is exactly the second problem, and therefore again we see that
strong duality holds

So how often does strong duality hold? In LPs, as we’ll see, strong
duality holds unless both the primal and dual are infeasible
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Quick summary

We introduced duality in LP and offered two explanations.
Explanation #1: Use constraints set to construct lower bounds,

make sure that the LHS of the lower bound matches the objective.

Explanation # 2: for any u and v ≥ 0, and x primal feasible

cTx ≥ cTx+ uT (Ax− b) + vT (Gx− h) := L(x, u, v)

So if C denotes primal feasible set, f? primal optimal value, then
for any u and v ≥ 0,

f? ≥ min
x∈C

L(x, u, v) ≥ min
x

L(x, u, v) := g(u, v)

Finally, maximize the lower bound. This second explanation

reproduces the same dual, but is actually completely general and
applies to arbitrary optimization problems (even nonconvex ones)
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Lagrangian

Consider general minimization problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r

Need not be convex, but of course we will pay special attention to
convex case

We define the Lagrangian as

L(x, u, v) = f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj`j(x)

New variables u ∈ Rm, v ∈ Rr, with u ≥ 0 (implicitly, we define
L(x, u, v) = −∞ for u < 0)
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Important property: for any u ≥ 0 and v,

f(x) ≥ L(x, u, v) at each feasible x

Why? For feasible x,

L(x, u, v) = f(x) +

m∑
i=1

ui hi(x)︸ ︷︷ ︸
≤0

+

r∑
j=1

vj `j(x)︸ ︷︷ ︸
=0

≤ f(x)
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Figure 5.1 Lower bound from a dual feasible point. The solid curve shows the
objective function f0, and the dashed curve shows the constraint function f1.
The feasible set is the interval [−0.46, 0.46], which is indicated by the two
dotted vertical lines. The optimal point and value are x⋆ = −0.46, p⋆ = 1.54
(shown as a circle). The dotted curves show L(x, λ) for λ = 0.1, 0.2, . . . , 1.0.
Each of these has a minimum value smaller than p⋆, since on the feasible set
(and for λ ≥ 0) we have L(x, λ) ≤ f0(x).
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Figure 5.2 The dual function g for the problem in figure 5.1. Neither f0 nor
f1 is convex, but the dual function is concave. The horizontal dashed line
shows p⋆, the optimal value of the problem.

• Solid line is f

• Dashed line is h, hence
feasible set ≈ [−0.46, 0.46]
• Each dotted line shows
L(x, u, v) for different
choices of u ≥ 0

(From B & V page 217)
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Lagrange dual function

Let C denote primal feasible set, f? denote primal optimal value.
Minimizing L(x, u, v) over all x gives a lower bound:

f? ≥ min
x∈C

L(x, u, v) ≥ min
x

L(x, u, v) := g(u, v)

We call g(u, v) the Lagrange dual function, and it gives a lower
bound on f? for any u ≥ 0 and v, called dual feasible u, v

• Dashed horizontal line is f?

• Dual variable λ is (our u)

• Solid line shows g(λ)

(From B & V page 217)

5.1 The Lagrange dual function 217
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Figure 5.1 Lower bound from a dual feasible point. The solid curve shows the
objective function f0, and the dashed curve shows the constraint function f1.
The feasible set is the interval [−0.46, 0.46], which is indicated by the two
dotted vertical lines. The optimal point and value are x⋆ = −0.46, p⋆ = 1.54
(shown as a circle). The dotted curves show L(x, λ) for λ = 0.1, 0.2, . . . , 1.0.
Each of these has a minimum value smaller than p⋆, since on the feasible set
(and for λ ≥ 0) we have L(x, λ) ≤ f0(x).
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Figure 5.2 The dual function g for the problem in figure 5.1. Neither f0 nor
f1 is convex, but the dual function is concave. The horizontal dashed line
shows p⋆, the optimal value of the problem. 24



Example: quadratic program

Consider quadratic program:

min
x

1

2
xTQx+ cTx

subject to Ax = b, x ≥ 0

where Q � 0. Lagrangian:

L(x, u, v) =
1

2
xTQx+ cTx− uTx+ vT (Ax− b)

Lagrange dual function:

g(u, v) = min
x

L(x, u, v) = −1

2
(c−u+AT v)TQ−1(c−u+AT v)−bT v

For any u ≥ 0 and any v, this is lower a bound on primal optimal
value f?
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Same problem

min
x

1

2
xTQx+ cTx

subject to Ax = b, x ≥ 0

but now Q � 0. Lagrangian:

L(x, u, v) =
1

2
xTQx+ cTx− uTx+ vT (Ax− b)

Lagrange dual function:

g(u, v) =


−1

2(c− u+AT v)TQ+(c− u+AT v)− bT v
−∞ if c− u+AT v ⊥ null(Q)

−∞ otherwise

where Q+ denotes generalized inverse of Q. For any u ≥ 0, v, and
c− u+AT v ⊥ null(Q), g(u, v) is a nontrivial lower bound on f?
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Example: quadratic program in 2D

We choose f(x) to be quadratic in 2 variables, subject to x ≥ 0.
Dual function g(u) is also quadratic in 2 variables, also subject to
u ≥ 0

x1 / u1 x2 / u
2

f / g

●●

primal

dual

Dual function g(u)
provides a bound on
f? for every u ≥ 0

Largest bound this
gives us: turns out
to be exactly f? ...
coincidence?

More on this later,
via KKT conditions
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Lagrange dual problem

Given primal problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r

Our constructed dual function g(u, v) satisfies f? ≥ g(u, v) for all
u ≥ 0 and v. Hence best lower bound is given by maximizing
g(u, v) over all dual feasible u, v, yielding Lagrange dual problem:

max
u,v

g(u, v)

subject to u ≥ 0

Key property, called weak duality: if dual optimal value is g?, then

f? ≥ g?

Note that this always holds (even if primal problem is nonconvex)
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Another key property: the dual problem is a convex optimization
problem (as written, it is a concave maximization problem)

Again, this is always true (even when primal problem is not convex)

By definition:

g(u, v) = min
x

{
f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj`j(x)
}

= −max
x

{
− f(x)−

m∑
i=1

uihi(x)−
r∑
j=1

vj`j(x)
}

︸ ︷︷ ︸
pointwise maximum of convex functions in (u, v)

I.e., g is concave in (u, v), and u ≥ 0 is a convex constraint, hence
dual problem is a concave maximization problem
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Example: nonconvex quartic minimization

Define f(x) = x4 − 50x2 + 100x (nonconvex), minimize subject to
constraint x ≥ −4.5
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−
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00
0
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00

30
00

50
00

Primal

x

f

●

0 20 40 60 80 100
−

11
60

−
11

20
−

10
80

Dual

v

g

Dual function g can be derived explicitly, via closed-form equation
for roots of a cubic equation
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Form of g is rather complicated:

g(u) = min
i=1,2,3

{
F 4
i (u)− 50F 2

i (u) + 100Fi(u)
}
,

where for i = 1, 2, 3,

Fi(u) =
−ai

12 · 21/3
(
432(100−u)−

(
4322(100−u)2−4·12003

)1/2)1/3
−100·21/3 1(

432(100− u)−
(
4322(100− u)2 − 4 · 12003

)1/2)1/3 ,
and a1 = 1, a2 = (−1 + i

√
3)/2, a3 = (−1− i

√
3)/2

Without the context of duality it would be difficult to tell whether
or not g is concave ... but we know it must be!
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Strong duality

Recall that we always have f? ≥ g? (weak duality). On the other
hand, in some problems we have observed that actually

f? = g?

which is called strong duality

Slater’s condition: if the primal is a convex problem (i.e., f and
h1, . . . hm are convex, `1, . . . `r are affine), and there exists at least
one strictly feasible x ∈ Rn, meaning

h1(x) < 0, . . . hm(x) < 0 and `1(x) = 0, . . . `r(x) = 0

then strong duality holds

This is a pretty weak condition. An important refinement: strict
inequalities only need to hold over functions hi that are not affine
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LPs: back to where we started

For linear programs:

• Easy to check that the dual of the dual LP is the primal LP

• Refined version of Slater’s condition: strong duality holds for
an LP if it is feasible

• Apply same logic to its dual LP: strong duality holds if it is
feasible

• Hence strong duality holds for LPs, except when both primal
and dual are infeasible

(In other words, we nearly always have strong duality for LPs)
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Example: support vector machine dual

Given y ∈ {−1, 1}n, X ∈ Rn×p, rows x1, . . . xn, recall the support
vector machine problem:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

subject to ξi ≥ 0, i = 1, . . . n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . n

Introducing dual variables v, w ≥ 0, we form the Lagrangian:

L(β, β0, ξ, v, w) =
1

2
‖β‖22 + C

n∑
i=1

ξi −
n∑
i=1

viξi +

n∑
i=1

wi
(
1− ξi − yi(xTi β + β0)

)
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Minimizing over β, β0, ξ gives Lagrange dual function:

g(v, w) =

{
−1

2w
T X̃X̃Tw + 1Tw if w = C1− v, wT y = 0

−∞ otherwise

where X̃ = diag(y)X. Thus SVM dual problem, eliminating slack
variable v, becomes

max
w

− 1

2
wT X̃X̃Tw + 1Tw

subject to 0 ≤ w ≤ C1, wT y = 0

Check: Slater’s condition is satisfied, and we have strong duality.
Further, from study of SVMs, might recall that at optimality

β = X̃Tw

This is not a coincidence, as we’ll later via the KKT conditions
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Duality gap

Given primal feasible x and dual feasible u, v, the quantity

f(x)− g(u, v)

is called the duality gap between x and u, v. Note that

f(x)− f? ≤ f(x)− g(u, v)

so if the duality gap is zero, then x is primal optimal (and similarly,
u, v are dual optimal)

From an algorithmic viewpoint, provides a stopping criterion: if
f(x)− g(u, v) ≤ ε, then we are guaranteed that f(x)− f? ≤ ε

Very useful, especially in conjunction with iterative methods ...
more dual uses in coming lectures

36



References

• S. Boyd and L. Vandenberghe (2004), “Convex optimization”,
Chapter 5

• R. T. Rockafellar (1970), “Convex analysis”, Chapters 28–30

37


