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Last time: duality

Given a minimization problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r

we defined the Lagrangian:

L(x, u, v) = f(x) +

m∑

i=1

uihi(x) +

r∑

j=1

vj`j(x)

and Lagrange dual function:

g(u, v) = min
x

L(x, u, v)
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The subsequent dual problem is:

max
u,v

g(u, v)

subject to u ≥ 0

Important properties:

• Dual problem is always convex, i.e., g is always concave (even
if primal problem is not convex)

• The primal and dual optimal values, f? and g?, always satisfy
weak duality: f? ≥ g?
• Slater’s condition: for convex primal, if there is an x such that

h1(x) < 0, . . . hm(x) < 0 and `1(x) = 0, . . . `r(x) = 0

then strong duality holds: f? = g?. Can be further refined to
strict inequalities over the nonaffine hi, i = 1, . . .m
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Karush-Kuhn-Tucker conditions

Given general problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r

The Karush-Kuhn-Tucker conditions or KKT conditions are:

• 0 ∈ ∂
(
f(x) +

m∑

i=1

uihi(x) +

r∑

j=1

vj`j(x)

)
(stationarity)

• ui · hi(x) = 0 for all i (complementary slackness)

• hi(x) ≤ 0, `j(x) = 0 for all i, j (primal feasibility)

• ui ≥ 0 for all i (dual feasibility)
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Necessity

Let x? and u?, v? be primal and dual solutions with zero duality
gap (strong duality holds, e.g., under Slater’s condition). Then

f(x?) = g(u?, v?)

= min
x

f(x) +

m∑

i=1

u?ihi(x) +

r∑

j=1

v?j `j(x)

≤ f(x?) +
m∑

i=1

u?ihi(x
?) +

r∑

j=1

v?j `j(x
?)

≤ f(x?)

In other words, all these inequalities are actually equalities
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Two things to learn from this:

• The point x? minimizes L(x, u?, v?) over x ∈ Rn. Hence the
subdifferential of L(x, u?, v?) must contain 0 at x = x?—this
is exactly the stationarity condition

• We must have
∑m

i=1 u
?
ihi(x

?) = 0, and since each term here
is ≤ 0, this implies u?ihi(x

?) = 0 for every i—this is exactly
complementary slackness

Primal and dual feasibility hold by virtue of optimality. Therefore:

If x? and u?, v? are primal and dual solutions, with zero duality
gap, then x?, u?, v? satisfy the KKT conditions

(Note that this statement assumes nothing a priori about convexity
of our problem, i.e., of f, hi, `j)
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Sufficiency

If there exists x?, u?, v? that satisfy the KKT conditions, then

g(u?, v?) = f(x?) +

m∑

i=1

u?ihi(x
?) +

r∑

j=1

v?j `j(x
?)

= f(x?)

where the first equality holds from stationarity, and the second
holds from complementary slackness

Therefore the duality gap is zero (and x? and u?, v? are primal and
dual feasible) so x? and u?, v? are primal and dual optimal. Hence,
we’ve shown:

If x? and u?, v? satisfy the KKT conditions, then x? and u?, v?

are primal and dual solutions
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Putting it together
In summary, KKT conditions:

• always sufficient

• necessary under strong duality

Putting it together:

For a problem with strong duality (e.g., assume Slater’s condi-
tion: convex problem and there exists x strictly satisfying non-
affine inequality contraints),

x? and u?, v? are primal and dual solutions

⇐⇒ x? and u?, v? satisfy the KKT conditions

(Warning, concerning the stationarity condition: for a differentiable
function f , we cannot use ∂f(x) = {∇f(x)} unless f is convex!
There are other versions of KKT conditions that deal with local
optima. )
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What’s in a name?

Older folks will know these as the KT (Kuhn-Tucker) conditions:

• First appeared in publication by Kuhn and Tucker in 1951

• Later people found out that Karush had the conditions in his
unpublished master’s thesis of 1939

For unconstrained problems, the KKT conditions are nothing more
than the subgradient optimality condition

For general convex problems, the KKT conditions could have been
derived entirely from studying optimality via subgradients

0 ∈ ∂f(x?) +
m∑

i=1

N{hi≤0}(x?) +
r∑

j=1

N{`j=0}(x
?)

where recall NC(x) is the normal cone of C at x
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Example: quadratic with equality constraints

Consider for Q � 0,

min
x

1

2
xTQx+ cTx

subject to Ax = 0

E.g., as we will see, this corresponds to Newton step for equality-
constrained problem minx f(x) subject to Ax = b

Convex problem, no inequality constraints, so by KKT conditions:
x is a solution if and only if

[
Q AT

A 0

] [
x
u

]
=

[
−c
0

]

for some u. Linear system combines stationarity, primal feasibility
(complementary slackness and dual feasibility are vacuous)
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Example: water-filling

Example from B & V page 245: consider problem

min
x

−
n∑

i=1

log(αi + xi)

subject to x ≥ 0, 1Tx = 1

Information theory: think of log(αi + xi) as communication rate of
ith channel. KKT conditions:

−1/(αi + xi)− ui + v = 0, i = 1, . . . n

ui · xi = 0, i = 1, . . . n, x ≥ 0, 1Tx = 1, u ≥ 0

Eliminate u:

1/(αi + xi) ≤ v, i = 1, . . . n

xi(v − 1/(αi + xi)) = 0, i = 1, . . . n, x ≥ 0, 1Tx = 1
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Can argue directly stationarity and complementary slackness imply

xi =

{
1/v − αi if v < 1/αi

0 if v ≥ 1/αi
= max{0, 1/v−αi}, i = 1, . . . n

Still need x to be feasible, i.e., 1Tx = 1, and this gives

n∑

i=1

max{0, 1/v − αi} = 1

Univariate equation, piecewise linear in 1/v and not hard to solve

This reduced problem is
called water-filling

(From B & V page 246)

246 5 Duality

i

1/ν⋆

xi

αi

Figure 5.7 Illustration of water-filling algorithm. The height of each patch is
given by αi. The region is flooded to a level 1/ν⋆ which uses a total quantity
of water equal to one. The height of the water (shown shaded) above each
patch is the optimal value of x⋆

i .

x1

x2

l

w w

Figure 5.8 Two blocks connected by springs to each other, and the left and
right walls. The blocks have width w > 0, and cannot penetrate each other
or the walls.

5.5.4 Mechanics interpretation of KKT conditions

The KKT conditions can be given a nice interpretation in mechanics (which indeed,
was one of Lagrange’s primary motivations). We illustrate the idea with a simple
example. The system shown in figure 5.8 consists of two blocks attached to each
other, and to walls at the left and right, by three springs. The position of the
blocks are given by x ∈ R2, where x1 is the displacement of the (middle of the) left
block, and x2 is the displacement of the right block. The left wall is at position 0,
and the right wall is at position l.

The potential energy in the springs, as a function of the block positions, is given
by

f0(x1, x2) =
1

2
k1x

2
1 +

1

2
k2(x2 − x1)

2 +
1

2
k3(l − x2)

2,

where ki > 0 are the stiffness constants of the three springs. The equilibrium
position x⋆ is the position that minimizes the potential energy subject to the in-
equalities

w/2 − x1 ≤ 0, w + x1 − x2 ≤ 0, w/2 − l + x2 ≤ 0. (5.51)
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Example: support vector machines

Given y ∈ {−1, 1}n, and X ∈ Rn×p, the support vector machine
problem is:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑

i=1

ξi

subject to ξi ≥ 0, i = 1, . . . n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . n

Introduce dual variables v, w ≥ 0. KKT stationarity condition:

0 =

n∑

i=1

wiyi, β =

n∑

i=1

wiyixi, w = C1− v

Complementary slackness:

viξi = 0, wi
(
1− ξi − yi(xTi β + β0)

)
= 0, i = 1, . . . n
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Hence at optimality we have β =
∑n

i=1wiyixi, and wi is nonzero
only if yi(x

T
i β + β0) = 1− ξi. Such points i are called the support

points

• For support point i, if ξi = 0, then xi lies on edge of margin,
and wi ∈ (0, C];

• For support point i, if ξi 6= 0, then xi lies on wrong side of
margin, and wi = C418 12. Flexible Discriminants
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FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
maximal margin of width 2M = 2/∥β∥. The right panel shows the nonseparable
(overlap) case. The points labeled ξ∗

j are on the wrong side of their margin by
an amount ξ∗

j = Mξj; points on the correct side have ξ∗
j = 0. The margin is

maximized subject to a total budget
P

ξi ≤ constant. Hence
P

ξ∗
j is the total

distance of points on the wrong side of their margin.

Our training data consists of N pairs (x1, y1), (x2, y2), . . . , (xN , yN ), with
xi ∈ IRp and yi ∈ {−1, 1}. Define a hyperplane by

{x : f(x) = xT β + β0 = 0}, (12.1)

where β is a unit vector: ∥β∥ = 1. A classification rule induced by f(x) is

G(x) = sign[xT β + β0]. (12.2)

The geometry of hyperplanes is reviewed in Section 4.5, where we show that
f(x) in (12.1) gives the signed distance from a point x to the hyperplane
f(x) = xT β+β0 = 0. Since the classes are separable, we can find a function
f(x) = xT β + β0 with yif(xi) > 0 ∀i. Hence we are able to find the
hyperplane that creates the biggest margin between the training points for
class 1 and −1 (see Figure 12.1). The optimization problem

max
β,β0,∥β∥=1

M

subject to yi(x
T
i β + β0) ≥ M, i = 1, . . . , N,

(12.3)

captures this concept. The band in the figure is M units away from the
hyperplane on either side, and hence 2M units wide. It is called the margin.

We showed that this problem can be more conveniently rephrased as

min
β,β0

∥β∥

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , N,

(12.4)

KKT conditions do not really give
us a way to find solution, but gives
a better understanding

In fact, we can use this to screen
away non-support points before
performing optimization
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Constrained and Lagrange forms

Often in statistics and machine learning we’ll switch back and forth
between constrained form, where t ∈ R is a tuning parameter,

min
x

f(x) subject to h(x) ≤ t (C)

and Lagrange form, where λ ≥ 0 is a tuning parameter,

min
x

f(x) + λ · h(x) (L)

and claim these are equivalent. Is this true (assuming convex f, h)?

(C) to (L): if problem (C) is strictly feasible, then strong duality
holds, and there exists some λ ≥ 0 (dual solution) such that any
solution x? in (C) minimizes

f(x) + λ · (h(x)− t)

so x? is also a solution in (L)
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(L) to (C): if x? is a solution in (L), then the KKT conditions for
(C) are satisfied by taking t = h(x?), so x? is a solution in (C)

Conclusion:

⋃

λ≥0
{solutions in (L)} ⊆

⋃

t

{solutions in (C)}
⋃

λ≥0
{solutions in (L)} ⊇

⋃

t such that (C)
is strictly feasible

{solutions in (C)}

This is nearly a perfect equivalence. Note: when the only value of
t that leads to a feasible but not strictly feasible constraint set is
t = 0, then we do get perfect equivalence

So, e.g., if h ≥ 0, and (C), (L) are feasible for all t, λ ≥ 0, then we
do get perfect equivalence
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Example: Lasso Support Recovery

Consider the standard Lasso:

min
β

1

2
‖Xβ − y‖2 + λ‖β‖1

Suppose we assume that y = Xβ0 +N (0, σ2I), and that β0 is
sparse. How can we prove properties of the optimal solutions β∗?

In particular, can we establish a condition under which there is no
false discovery

{i|β∗i 6= 0} ⊂ {i|[β0]i 6= 0}
or even that the discoveries are all correct (Sparsistency)

{i|β∗i 6= 0} = {i|[β0]i 6= 0}.
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The KKT conditions are

−XT (Xβ − y) = λv, vi ∈
{
{sign(βi)} if βi 6= 0

[−1, 1] if βi = 0
, i = 1, . . . n

Consider the fictitious optimization problem that knows the set of
coordinates where β0 is non-zero to begin with.

min
βS

1

2
‖XSβS − y‖2 + λ‖βS‖1

The optimal solution to this fictious problem provides us with a
candidate primal solution to the original problem. It suffices to
constuct a dual solution v∗ and check the KKT condition of the
original problem.
In fact, it suffices to construct a dual solution such that
si ∈ (−1, 1) for all i /∈ S.
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Back to duality

One of the most important uses of duality is that, under strong
duality, we can characterize primal solutions from dual solutions

Recall that under strong duality, the KKT conditions are necessary
for optimality. Given dual solutions u?, v?, any primal solution x?

satisfies the stationarity condition

0 ∈ ∂f(x?) +
m∑

i=1

u?i ∂hi(x
?) +

r∑

j=1

v?i ∂`j(x
?)

In other words, x? solves minx L(x, u
?, v?)

• Generally, this reveals a characterization of primal solutions

• In particular, if this is satisfied uniquely (i.e., above problem
has a unique minimizer), then the corresponding point must
be the primal solution
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Uses of duality

Two key uses of duality:

• For x primal feasible and u, v dual feasible,

f(x)− g(u, v)

is called the duality gap between x and u, v. Since

f(x)− f(x?) ≤ f(x)− g(u, v)

a zero duality gap implies optimality. Also, the duality gap
can be used as a stopping criterion in algorithms

• Under strong duality, given dual optimal u?, v?, any primal
solution minimizes L(x, u?, v?) over all x (i.e., it satisfies
stationarity condition). This can be used to characterize or
compute primal solutions

21



Solving the primal via the dual

An important consequence of stationarity: under strong duality,
given a dual solution u?, v?, any primal solution x? solves

min
x

f(x) +

m∑

i=1

u?ihi(x) +

r∑

j=1

v?j `j(x)

Often, solutions of this unconstrained problem can be expressed
explicitly, giving an explicit characterization of primal solutions
from dual solutions

Furthermore, suppose the solution of this problem is unique; then
it must be the primal solution x?

This can be very helpful when the dual is easier to solve than the
primal
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Example from B & V page 249:

min
x

n∑

i=1

fi(xi) subject to aTx = b

where each fi : R→ R is smooth, strictly convex. Dual function:

g(v) = min
x

n∑

i=1

fi(xi) + v(b− aTx)

= bv +
n∑

i=1

min
xi

{
fi(xi)− aivxi

}

= bv −
n∑

i=1

f∗i (aiv)

where f∗i is the conjugate of fi, to be defined shortly
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Therefore the dual problem is

max
v

bv −
n∑

i=1

f∗i (aiv) ⇐⇒ min
v

n∑

i=1

f∗i (aiv)− bv

This is a convex minimization problem with scalar variable—much
easier to solve than primal

Given v?, the primal solution x? solves

min
x

n∑

i=1

(
fi(xi)− aiv?xi

)

Strict convexity of each fi implies that this has a unique solution,
namely x?, which we compute by solving ∇fi(xi) = aiv

? for each i
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Dual norms

Let ‖x‖ be a norm, e.g.,

• `p norm: ‖x‖p = (
∑n

i=1 |xi|p)1/p, for p ≥ 1

• Trace norm: ‖X‖tr =
∑r

i=1 σi(X)

We define its dual norm ‖x‖∗ as

‖x‖∗ = max
‖z‖≤1

zTx

Gives us the inequality |zTx| ≤ ‖z‖‖x‖∗ (like generalized Holder).
Back to our examples,

• `p norm dual: (‖x‖p)∗ = ‖x‖q, where 1/p+ 1/q = 1

• Trace norm dual: (‖X‖tr)∗ = ‖X‖op = σ1(X)

Dual norm of dual norm: can show that ‖x‖∗∗ = ‖x‖
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Proof: consider the (trivial-looking) problem

min
y
‖y‖ subject to y = x

whose optimal value is ‖x‖. Lagrangian:

L(y, u) = ‖y‖+ uT (x− y) = ‖y‖ − yTu+ xTu

Using definition of ‖ · ‖∗,
• If ‖u‖∗ > 1, then miny {‖y‖ − yTu} = −∞
• If ‖u‖∗ ≤ 1, then miny {‖y‖ − yTu} = 0

Therefore Lagrange dual problem is

max
u

uTx subject to ‖u‖∗ ≤ 1

By strong duality f? = g?, i.e., ‖x‖ = ‖x‖∗∗
26



Conjugate function

Given a function f : Rn → R, define its conjugate f∗ : Rn → R,

f∗(y) = max
x

yTx− f(x)

Note that f∗ is always convex, since it is the pointwise maximum
of convex (affine) functions in y (here f need not be convex)3.3 The conjugate function 91

f(x)

(0, −f∗(y))

xy

x

Figure 3.8 A function f : R → R, and a value y ∈ R. The conjugate
function f∗(y) is the maximum gap between the linear function yx and
f(x), as shown by the dashed line in the figure. If f is differentiable, this
occurs at a point x where f ′(x) = y.

3.3.1 Definition and examples

Let f : Rn → R. The function f∗ : Rn → R, defined as

f∗(y) = sup
x∈dom f

(
yT x − f(x)

)
, (3.18)

is called the conjugate of the function f . The domain of the conjugate function
consists of y ∈ Rn for which the supremum is finite, i.e., for which the difference
yT x − f(x) is bounded above on dom f . This definition is illustrated in figure 3.8.

We see immediately that f∗ is a convex function, since it is the pointwise
supremum of a family of convex (indeed, affine) functions of y. This is true whether
or not f is convex. (Note that when f is convex, the subscript x ∈ dom f is not
necessary since, by convention, yT x − f(x) = −∞ for x ̸∈ dom f .)

We start with some simple examples, and then describe some rules for conjugat-
ing functions. This allows us to derive an analytical expression for the conjugate
of many common convex functions.

Example 3.21 We derive the conjugates of some convex functions on R.

• Affine function. f(x) = ax + b. As a function of x, yx − ax − b is bounded if
and only if y = a, in which case it is constant. Therefore the domain of the
conjugate function f∗ is the singleton {a}, and f∗(a) = −b.

• Negative logarithm. f(x) = − log x, with dom f = R++. The function xy+log x
is unbounded above if y ≥ 0 and reaches its maximum at x = −1/y otherwise.
Therefore, dom f∗ = {y | y < 0} = −R++ and f∗(y) = − log(−y)−1 for y < 0.

• Exponential. f(x) = ex. xy − ex is unbounded if y < 0. For y > 0, xy − ex

reaches its maximum at x = log y, so we have f∗(y) = y log y − y. For y = 0,

f∗(y) : maximum gap between
linear function yTx and f(x)

(From B & V page 91)

For differentiable f , conjugation is called the Legendre transform
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Properties:

• Fenchel’s inequality: for any x, y,

f(x) + f∗(y) ≥ xT y

• Conjugate of conjugate f∗∗ satisfies f∗∗ ≤ f
• If f is closed and convex, then f∗∗ = f

• If f is closed and convex, then for any x, y,

x ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x)
⇐⇒ f(x) + f∗(y) = xT y

• If f(u, v) = f1(u) + f2(v), then

f∗(w, z) = f∗1 (w) + f∗2 (z)
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Examples:

• Simple quadratic: let f(x) = 1
2x

TQx, where Q � 0. Then
yTx− 1

2x
TQx is strictly concave in y and is maximized at

y = Q−1x, so

f∗(y) =
1

2
yTQ−1y

• Indicator function: if f(x) = IC(x), then its conjugate is

f∗(y) = I∗C(y) = max
x∈C

yTx

called the support function of C

• Norm: if f(x) = ‖x‖, then its conjugate is

f∗(y) = I{z : ‖z‖∗≤1}(y)

where ‖ · ‖∗ is the dual norm of ‖ · ‖
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Example: lasso dual

Given y ∈ Rn, X ∈ Rn×p, recall the lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

Its dual function is just a constant (equal to f?). Therefore we
transform the primal to

min
β,z

1

2
‖y − z‖22 + λ‖β‖1 subject to z = Xβ

so dual function is now

g(u) = min
β,z

1

2
‖y − z‖22 + λ‖β‖1 + uT (z −Xβ)

=
1

2
‖y‖22 −

1

2
‖y − u‖22 − I{v : ‖v‖∞≤1}(XTu/λ)
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Therefore the lasso dual problem is

max
u

1

2

(
‖y‖22 − ‖y − u‖22

)
subject to ‖XTu‖∞ ≤ λ

⇐⇒ min
u
‖y − u‖22 subject to ‖XTu‖∞ ≤ λ

Check: Slater’s condition holds, and hence so does strong duality.
But note: the optimal value of the last problem is not the optimal
lasso objective value

Further, note that given the dual solution u, any lasso solution β
satisfies

Xβ = y − u
This is from KKT stationarity condition for z (i.e., z − y + β = 0).
So the lasso fit is just the dual residual
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y

C = {u : ‖XT u‖∞ ≤ λ}

Xβ̂

0
0

û

{v : ‖v‖∞ ≤ λ}

A, sA

(XT )−1

Rn Rp

1
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Conjugates and dual problems

Conjugates appear frequently in derivation of dual problems, via

−f∗(u) = min
x

f(x)− uTx

in minimization of the Lagrangian. E.g., consider

min
x

f(x) + g(x)

Equivalently: min
x,z

f(x) + g(z) subject to x = z. Dual function:

g(u) = min
x

f(x) + g(z) + uT (z − x) = −f∗(u)− g∗(−u)

Hence dual problem is

max
u
−f∗(u)− g∗(−u)
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Examples of this last calculation:

• Indicator function:

Primal : min
x

f(x) + IC(x)

Dual : max
u
−f∗(u)− I∗C(−u)

where I∗C is the support function of C

• Norms: the dual of

Primal : min
x

f(x) + ‖x‖
Dual : max

u
−f∗(u) subject to ‖u‖∗ ≤ 1

where ‖ · ‖∗ is the dual norm of ‖ · ‖
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Shifting linear transformations: Fenchel Dual

Dual formulations can help us by “shifting” a linear transformation
between one part of the objective and another. Consider

min
x

f(x) + g(Ax)

Equivalently: min
x,z

f(x) + g(z) subject to Ax = z. Like before,
dual is:

max
u
−f∗(ATu)− g∗(−u)

Example: for a norm and its dual norm, ‖ · ‖, ‖ · ‖∗:

Primal : min
x

f(x) + ‖Ax‖

Dual : max
u
−f(ATu) subject to ‖u‖∗ ≤ 1

The dual can often be a helpful transformation here
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Dual cones

For a cone K ⊆ Rn (recall this means x ∈ K, t ≥ 0 =⇒ tx ∈ K),

K∗ = {y : yTx ≥ 0 for all x ∈ K}

is called its dual cone. This is always a convex cone (even if K is
not convex)

52 2 Convex sets

K Ky

z

Figure 2.22 Left. The halfspace with inward normal y contains the cone K,
so y ∈ K∗. Right. The halfspace with inward normal z does not contain K,
so z ̸∈ K∗.

Example 2.23 Nonnegative orthant. The cone Rn
+ is its own dual:

xT y ≥ 0 for all x ≽ 0 ⇐⇒ y ≽ 0.

We call such a cone self-dual.

Example 2.24 Positive semidefinite cone. On the set of symmetric n × n matrices
Sn, we use the standard inner product tr(XY ) =

∑n

i,j=1
XijYij (see §A.1.1). The

positive semidefinite cone Sn
+ is self-dual, i.e., for X, Y ∈ Sn,

tr(XY ) ≥ 0 for all X ≽ 0 ⇐⇒ Y ≽ 0.

We will establish this fact.

Suppose Y ̸∈ Sn
+. Then there exists q ∈ Rn with

qT Y q = tr(qqT Y ) < 0.

Hence the positive semidefinite matrix X = qqT satisfies tr(XY ) < 0; it follows that
Y ̸∈ (Sn

+)∗.

Now suppose X, Y ∈ Sn
+. We can express X in terms of its eigenvalue decomposition

as X =
∑n

i=1
λiqiq

T
i , where (the eigenvalues) λi ≥ 0, i = 1, . . . , n. Then we have

tr(Y X) = tr

(
Y

n∑

i=1

λiqiq
T
i

)
=

n∑

i=1

λiq
T
i Y qi ≥ 0.

This shows that Y ∈ (Sn
+)∗.

Example 2.25 Dual of a norm cone. Let ∥ · ∥ be a norm on Rn. The dual of the
associated cone K = {(x, t) ∈ Rn+1 | ∥x∥ ≤ t} is the cone defined by the dual norm,
i.e.,

K∗ = {(u, v) ∈ Rn+1 | ∥u∥∗ ≤ v},

Notice that y ∈ K∗

⇐⇒ the halfspace {x :
yTx ≥ 0} contains K

(From B & V page 52)

Important property: if K is a closed convex cone, then K∗∗ = K
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Examples:

• Linear subspace: the dual cone of a linear subspace V is V ⊥,
its orthogonal complement. E.g., (row(A))∗ = null(A)

• Norm cone: the dual cone of the norm cone

K = {(x, t) ∈ Rn+1 : ‖x‖ ≤ t}

is the norm cone of its dual norm

K∗ = {(y, s) ∈ Rn+1 : ‖y‖∗ ≤ s}

• Positive semidefinite cone: the convex cone Sn+ is self-dual,
meaning (Sn+)∗ = Sn+. Why? Check that

Y � 0 ⇐⇒ tr(Y X) ≥ 0 for all X � 0

by looking at the eigendecomposition of X
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Dual cones and dual problems

Consider the cone constrained problem

min
x

f(x) subject to Ax ∈ K

Recall that its dual problem is

max
u
−f∗(ATu)− I∗K(−u)

where recall I∗K(y) = maxz∈K zT y, the support function of K. If
K is a cone, then this is simply

max
u
−f∗(ATu) subject to u ∈ K∗

where K∗ is the dual cone of K, because I∗K(−u) = IK∗(u)

This is quite a useful observation, because many different types of
constraints can be posed as cone constraints
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Dual Cone and Polar Cone

K∗ = {y : yTx ≥ 0 for all x ∈ K}
Ko = {y : yTx ≤ 0 for all x ∈ K}

Any x satisfies that x = ProjK(x) + ProjKo(x). Recall the Moreau
Decomposition:

x = proxf (x) + proxf∗(x)

Let f = IK , its conjugate is suppK(y) = maxx∈K〈x, y〉.
The prox of the support function of a cone is the projection to its
polar cone!
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Dual subtleties

• Often, we will transform the dual into an equivalent problem
and still call this the dual. Under strong duality, we can use
solutions of the (transformed) dual problem to characterize or
compute primal solutions

Warning: the optimal value of this transformed dual problem
is not necessarily the optimal primal value

• A common trick in deriving duals for unconstrained problems
is to first transform the primal by adding a dummy variable
and an equality constraint

Usually there is ambiguity in how to do this. Different choices
can lead to different dual problems!
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Double dual

Consider general minimization problem with linear constraints:

min
x

f(x)

subject to Ax ≤ b, Cx = d

The Lagrangian is

L(x, u, v) = f(x) + (ATu+ CT v)Tx− bTu− dT v

and hence the dual problem is

max
u,v

− f∗(−ATu− CT v)− bTu− dT v

subject to u ≥ 0

Recall property: f∗∗ = f if f is closed and convex. Hence in this
case, we can show that the dual of the dual is the primal
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Actually, the connection (between duals of duals and conjugates)
runs much deeper than this, beyond linear constraints. Consider

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r

If f and h1, . . . hm are closed and convex, and `1, . . . `r are affine,
then the dual of the dual is the primal

This is proved by viewing the minimization problem in terms of a
bifunction. In this framework, the dual function corresponds to the
conjugate of this bifunction (for more, read Chapters 29 and 30 of
Rockafellar)
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