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Last time: duality

Given a minimization problem

min f(z)
subject to hi(z) <0,i=1,...m
li(x) =0, 5=1,...r
we defined the Lagrangian:
L(:U,’U,, ’U) - f(.ili‘) + Zulhl(x) + Z’Ujej(.%')
i=1 j=1

and Lagrange dual function:

g(u,v) = min L(z,u,v)
x



The subsequent dual problem is:
max g(u,v)
u,v

subject to u >0

Important properties:
® Dual problem is always convex, i.e., g is always concave (even
if primal problem is not convex)
® The primal and dual optimal values, f* and g*, always satisfy
weak duality: f* > g*
® Slater's condition: for convex primal, if there is an x such that

hi(x) <0,...hp(z) <0 and #1(x)=0,...0:.(x)=0

then strong duality holds: f* = g*. Can be further refined to
strict inequalities over the nonaffine h;, i =1,...m
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Karush-Kuhn-Tucker conditions

Given general problem

min f(x)
T
subject to  hi(x) <0,i=1,...m
li(x)=0,7=1,...r

The Karush-Kuhn-Tucker conditions or KKT conditions are:
LIRS 8<f(x) + Z uihi(x) + Z vl (x)) (stationarity)
i=1 j=1

® u;-hi(x) =0 for all ¢ (complementary slackness)
® hi(xz) <0, ¢j(x) =0 forall i,j (primal feasibility)
® u; >0 foralli (dual feasibility)



Necessity

Let 2* and u*, v* be primal and dual solutions with zero duality
gap (strong duality holds, e.g., under Slater’s condition). Then

f@®) = g(u”, v")

= mln fz)+ Zu*h + Zv]*ﬁj(x)
j=1
z*) + Z uphi(2*) + Z vili(x*
i=1 j=1

< f(x¥)

In other words, all these inequalities are actually equalities



Two things to learn from this:

® The point * minimizes L(x,u*,v*) over z € R™. Hence the
subdifferential of L(z,u*,v*) must contain 0 at x = 2*—this
is exactly the stationarity condition

® We must have Y ", ufh;(2*) = 0, and since each term here
is < 0, this implies u}h;(x*) = 0 for every i—this is exactly
complementary slackness

Primal and dual feasibility hold by virtue of optimality. Therefore:

If * and w*,v* are primal and dual solutions, with zero duality
gap, then x*, u*, v* satisfy the KKT conditions

(Note that this statement assumes nothing a priori about convexity
of our problem, i.e., of f,h;, ;)



Sufficiency

If there exists x*, u*, v* that satisfy the KKT conditions, then

gur,v*) = f(2*) + ) ulhi(at) + > vt (@)
i=1 j=1
= f(a*)

where the first equality holds from stationarity, and the second
holds from complementary slackness

Therefore the duality gap is zero (and x* and u*,v* are primal and
dual feasible) so x* and u*,v* are primal and dual optimal. Hence,
we've shown:

If * and u*, v* satisfy the KKT conditions, then x* and u*, v*
are primal and dual solutions




Putting it together
In summary, KKT conditions:
® always sufficient
® necessary under strong duality

Putting it together:

For a problem with strong duality (e.g., assume Slater's condi-
tion: convex problem and there exists x strictly satisfying non-

affine inequality contraints),
2* and w*,v* are primal and dual solutions
<= " and u*,v* satisfy the KKT conditions

(Warning, concerning the stationarity condition: for a differentiable

function f, we cannot use 0f(z) = {V f(z)} unless f is convex!
There are other versions of KKT conditions that deal with local

optima. )



What's in a name?

Older folks will know these as the KT (Kuhn-Tucker) conditions:
® First appeared in publication by Kuhn and Tucker in 1951

® | ater people found out that Karush had the conditions in his
unpublished master’s thesis of 1939

For unconstrained problems, the KKT conditions are nothing more
than the subgradient optimality condition

For general convex problems, the KKT conditions could have been
derived entirely from studying optimality via subgradients

0€df(x +ZN{h <oy +ZN{%—0} ")

=1 7j=1

where recall No(x) is the normal cone of C' at z
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Example: quadratic with equality constraints

Consider for Q) = 0,

1
min —2TQu + Tx
P 2

subject to Az =0

E.g., as we will see, this corresponds to Newton step for equality-
constrained problem min, f(z) subject to Ax =b

Convex problem, no inequality constraints, so by KKT conditions:
x is a solution if and only if

Q AT x| | —c

A 0 w| | O
for some wu. Linear system combines stationarity, primal feasibility
(complementary slackness and dual feasibility are vacuous)
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Example: water-filling

Example from B & V page 245: consider problem

n
Ir}ﬁcin — Z log (o + ;)
i=1
subject to >0, 1Tz =1

Information theory: think of log(«; + ;) as communication rate of
ith channel. KKT conditions:

—1/(ovi +x;) —ui+v=0, i=1,...n
u-x; =0, 1=1,...n, x>0, 1Tx:1, u >0
Eliminate u:

/(v +ax;) <v, i=1,...n
zi(v—1/(; +2;)) =0, i=1,...n, >0, 1Tz=1
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Can argue directly stationarity and complementary slackness imply

1/v—a; if 1/ .
T = fv-a I v<l/a = max{0,1/v—q;}, i=1,...n
0 if v>1/q

Still need z to be feasible, i.e., 172 = 1, and this gives

n
Zmax{o, 1/jv—a;} =1
i=1

Univariate equation, piecewise linear in 1/v and not hard to solve

This reduced problem is
called water-filling /v

(From B & V page 246) a;
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Example: support vector machines

Given y € {—1,1}", and X € R™*P, the support vector machine
problem is:

1 n
min S 18113 +C;&
subject to & >0, i=1,...n
yi(zlB+B)>1-¢&,i=1,...n
Introduce dual variables v, w > 0. KKT stationarity condition:
n n
0=> wwyi, B=Y wiizi; w=Cl—y
i=1 i=1

Complementary slackness:

vi& =0, wi(1 - & —yi(x] B+ By)) =0, i=1,...n
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Hence at optimality we have 8 = Z?Zl w;Y;x;, and w; is nonzero
only if y;(z 8+ Bo) = 1 — &. Such points i are called the support
points
® For support point i, if & = 0, then x; lies on edge of margin,
and w; € (0,C];
® For support point i, if & # 0, then z; lies on wrong side of
margin, and w; = C

T3+ By =0 o .
’ ’ KKT conditions do not really give

us a way to find solution, but gives
a better understanding

In fact, we can use this to screen
away non-support points before
performing optimization

margin
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Constrained and Lagrange forms

Often in statistics and machine learning we'll switch back and forth
between constrained form, where ¢ € R is a tuning parameter,

mxin f(z) subject to h(z) <t ()

and Lagrange form, where A > 0 is a tuning parameter,

min f(x) 4+ A h(x) (L)
and claim these are equivalent. Is this true (assuming convex f, h)?

(C) to (L): if problem (C) is strictly feasible, then strong duality
holds, and there exists some A > 0 (dual solution) such that any
solution z* in (C) minimizes

f(@) + - (h(z) — 1)

so z* is also a solution in (L)
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(L) to (C): if z* is a solution in (L), then the KKT conditions for
(C) are satisfied by taking t = h(z*), so 2* is a solution in (C)

Conclusion:
U {solutions in (L)} C U {solutions in (C)}
A>0 t
U {solutions in (L)} D U {solutions in (C)}
A>0 t such that (C)

is strictly feasible

This is nearly a perfect equivalence. Note: when the only value of
t that leads to a feasible but not strictly feasible constraint set is
t = 0, then we do get perfect equivalence

So, e.g., if h >0, and (C), (L) are feasible for all ¢, \ > 0, then we
do get perfect equivalence
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Example: Lasso Support Recovery

Consider the standard Lasso:
.1 9
min 3|18 =y + Al

Suppose we assume that y = X 39 + AN(0,0%I), and that f3q is
sparse. How can we prove properties of the optimal solutions 5*7

In particular, can we establish a condition under which there is no
false discovery

{el67 # 03 < {il[Boli # 0}

or even that the discoveries are all correct (Sparsistency)

{ils; # 0} = {i|[Bo]: # 0}.
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The KKT conditions are

_XT(XB— ) — o JAsign(B)}y i B A0
X (XB —y) = Ao, UZG{[—l,l] ifBiZO,Z—l,...n

Consider the fictitious optimization problem that knows the set of
coordinates where 3y is non-zero to begin with.

1
min = || Xs8s — yl|* + A|Bsh
Bs 2

The optimal solution to this fictious problem provides us with a
candidate primal solution to the original problem. It suffices to
constuct a dual solution v* and check the KKT condition of the
original problem.

In fact, it suffices to construct a dual solution such that
si€(—1,1) foralli ¢ S.
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Back to duality

One of the most important uses of duality is that, under strong
duality, we can characterize primal solutions from dual solutions

Recall that under strong duality, the KKT conditions are necessary
for optimality. Given dual solutions u*, v*, any primal solution x*
satisfies the stationarity condition

0€df(x +Zu*8h +Zv*ae

In other words, z* solves min, L(x,u*,v*)

® Generally, this reveals a characterization of primal solutions

® In particular, if this is satisfied uniquely (i.e., above problem
has a unique minimizer), then the corresponding point must
be the primal solution
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Uses of duality

Two key uses of duality:

® For x primal feasible and u, v dual feasible,

f(@) = g(u,v)

is called the duality gap between z and u,v. Since

f(@) = f(z%) < f(z) — g(u,v)

a zero duality gap implies optimality. Also, the duality gap
can be used as a stopping criterion in algorithms

® Under strong duality, given dual optimal u*, v*, any primal
solution minimizes L(z,u*,v*) over all x (i.e., it satisfies
stationarity condition). This can be used to characterize or
compute primal solutions
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Solving the primal via the dual

An important consequence of stationarity: under strong duality,
given a dual solution u*, v*, any primal solution z* solves

Irgn f(z)+ Z uyhi(z) + Z vil;()
i=1 j=1

Often, solutions of this unconstrained problem can be expressed
explicitly, giving an explicit characterization of primal solutions
from dual solutions

Furthermore, suppose the solution of this problem is unique; then
it must be the primal solution z*

This can be very helpful when the dual is easier to solve than the
primal
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Example from B & V page 249:

n
mxin Z fi(z;) subject to alx =10
i=1

where each f; : R — R is smooth, strictly convex. Dual function:

g(v) = min Z fil@s) +o(b—alx)
i=1

=bv + Z min {fl(acz) - aivxi}
-1

—bo= 3 )
=1

where f is the conjugate of f;, to be defined shortly
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Therefore the dual problem is
max bv — g fi(a;v) <= min E fi(a;v) — bv
v v
i=1 i=1

This is a convex minimization problem with scalar variable—much
easier to solve than primal

Given v*, the primal solution z* solves
n
: *
min g (fl(xl) — a;v ml)
i=1

Strict convexity of each f; implies that this has a unique solution,
namely z*, which we compute by solving V f;(z;) = a;v* for each i

24



Dual norms

Let ||z|| be a norm, e.g.,
o by norm: |zl = (i |wif?) /P, for p > 1
® Trace norm: || X|ler = > i 0i(X)

We define its dual norm ||z||. as

|||« = max 2Tz

=<1

Gives us the inequality |27 2| < ||z||||z||« (like generalized Holder).

Back to our examples,
® /, norm dual: (||z]p)« = [|z|lq, where 1/p+1/¢=1
e Trace norm dual: (|| X|¢tr)s = || X|lop = 01(X)

Dual norm of dual norm: can show that ||z||.. = ||zl
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Proof: consider the (trivial-looking) problem

min ||y|| subject to y==x
Y

whose optimal value is ||z||. Lagrangian:
L(y,u) = |yl +u"(z —y) = ly| =y u+a'u

Using definition of || - ||,
® If [Jull« > 1, then min, {||y|| — y*u} = —c
© 1F Julle < 1, then min {|ly]| - y7u} = 0

Therefore Lagrange dual problem is

max ulz subject to |jul, <1
u

By strong duality f* = g%, i.e., ||z|| = |||

26



Conjugate function

Given a function f : R™ — R, define its conjugate f*: R" — R,
F*(y) = max y'z — f(x)

Note that f* is always convex, since it is the pointwise maximum

of convex (affine) functions in y (here f need not be convex)

f*(y) : maximum gap between
linear function 372 and f(z)

V v (From B & V page 91)
0,1 )

For differentiable f, conjugation is called the Legendre transform
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Properties:

® Fenchel’s inequality: for any z,y,

fl@)+ fy) = 2"y

e Conjugate of conjugate f** satisfies f** < f
If fis closed and convex, then f** = f

If f is closed and convex, then for any x,y,

redf(y) < yeaif(zx)
= fl@)+ 'y =2"y

If f(u,v) = fi(u)+ fa(v), then
fr(w, z) = fi(w) + f5(2)
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Examples:

e Simple quadratic: let f(z) = %xTQ:c, where Q > 0. Then

yla — %xTQx is strictly concave in y and is maximized at

y=Q 'z, so ,
) =5y Q"y

¢ Indicator function: if f(z) = Io(z), then its conjugate is
* — JI* — T
fi(y) =1Ic(y) =max y'a
called the support function of C'
® Norm: if f(z) = ||z, then its conjugate is
W) =1z z).<13(v)

where || - ||« is the dual norm of | - ||
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Example: lasso dual

Given y € R, X € R"™*P, recall the lasso problem:
1 9
min lly = X318 + Al

Its dual function is just a constant (equal to f*). Therefore we
transform the primal to

1
n/}in §||y—z||%—|—)\||ﬂ|\1 subject to z = Xf
Y

so dual function is now

1
9(w) =min Sy - 2|12+ N8| + uT(z — XB)

1

1
= Sl = Sy =l — T oy (X T/ )
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Therefore the lasso dual problem is

1 .
max = ([lyl}3 = ly—ull3) subject to X7 ulls < A

<~ min ||y —ul|3 subject to || XTulle <A
u

Check: Slater's condition holds, and hence so does strong duality.
But note: the optimal value of the last problem is not the optimal
lasso objective value

Further, note that given the dual solution u, any lasso solution 3
satisfies
XB=y—u

This is from KKT stationarity condition for z (i.e., z —y + 5 = 0).

So the lasso fit is just the dual residual
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C={u:[[XTufw <A}

R’n

? (XT)—l

()

{v:lvllee <A}

RP
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Conjugates and dual problems

Conjugates appear frequently in derivation of dual problems, via
—f*(u) = min f(z) —u'x
x
in minimization of the Lagrangian. E.g., consider

min f(x) + g(2)

Equivalently: min f(x)+ g(z) subject to x = z. Dual function:
T,z

g(u) = min f(z) +g(z) +u’ (2 = 2) = —f*(u) - g (~u)
Hence dual problem is

max —f*(u) — g*(~u)
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Examples of this last calculation:

® |ndicator function:
Primal :  min f(z)+ Io(z)
xr
Dual :  max —f*(u) — I5(—u)
u
where I¢. is the support function of C'

® Norms: the dual of

Primal :  min f(z) + ||z]]
x
Dual : max —f*(u) subject to |jull. <1
u
where || - ||« is the dual norm of || - ||
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Shifting linear transformations: Fenchel Dual

Dual formulations can help us by “shifting” a linear transformation
between one part of the objective and another. Consider

min f(z) +g(Az)
Equivalently: min f(x) 4 g(z) subject to Az = z. Like before,
dual is: "

max —f*(ATu) — g*(~u)

u
Example: for a norm and its dual norm, || - ||, || - ||«
Primal :  min f(x) + || Az||
x

Dual : max —f(ATu) subject to |jull, <1
u

The dual can often be a helpful transformation here
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Dual cones

For a cone K C R™ (recall this means z € K, t > 0 = tx € K),
K*={y:y"x>0 forall z € K}

is called its dual cone. This is always a convex cone (even if K is
not convex)

Notice that y € K*
<= the halfspace {z :
’ yT'z > 0} contains K

(From B & V page 52)

Important property: if K is a closed convex cone, then K** = K
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Examples:

® Linear subspace: the dual cone of a linear subspace V is V-,

its orthogonal complement. E.g., (row(A))* = null(A)

® Norm cone: the dual cone of the norm cone
K ={(z,t) eR"™ : ||z| <t}
is the norm cone of its dual norm

K" ={(y,s) eR""" : Iyl < s}

® Positive semidefinite cone: the convex cone S} is self-dual,
meaning (S} )* = S’t. Why? Check that

Y>>0 < tr(YX)>0 forall X >0

by looking at the eigendecomposition of X
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Dual cones and dual problems

Consider the cone constrained problem
Héin f(z) subject to Ar e K
Recall that its dual problem is
max —f*(ATu) — I (—u)

where recall I} (y) = max,cx 27y, the support function of K. If
K is a cone, then this is simply

max —f*(ATu) subject to u € K*
u
where K* is the dual cone of K, because I} (—u) = I+ (u)

This is quite a useful observation, because many different types of
constraints can be posed as cone constraints
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Dual Cone and Polar Cone

K*={y:y"x>0 forall z € K}
K°={y:yTx <0 forall z € K}

Any x satisfies that & = Projg (x) + Projgo(x). Recall the Moreau
Decomposition:

x = prox¢(x) + prox. ()
Let f = Ik, its conjugate is suppy (y) = max,cx{(x,y).

The prox of the support function of a cone is the projection to its
polar cone!
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Dual subtleties

e Often, we will transform the dual into an equivalent problem
and still call this the dual. Under strong duality, we can use
solutions of the (transformed) dual problem to characterize or
compute primal solutions

Warning: the optimal value of this transformed dual problem
is not necessarily the optimal primal value

® A common trick in deriving duals for unconstrained problems
is to first transform the primal by adding a dummy variable
and an equality constraint

Usually there is ambiguity in how to do this. Different choices
can lead to different dual problems!
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Double dual

Consider general minimization problem with linear constraints:

min f(x)
subject to Ax <b, Cx=d
The Lagrangian is
L(z,u,v) = f(z) + (ATu+ CTv) T2 — bTu — dTv
and hence the dual problem is
max — f(=ATu — CTv) — bTu — dTv

subject to u >0

Recall property: f** = f if f is closed and convex. Hence in this
case, we can show that the dual of the dual is the primal
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Actually, the connection (between duals of duals and conjugates)
runs much deeper than this, beyond linear constraints. Consider

min f(x)

subject to  hi(z) <

If fand hq,...h,, are closed and convex, and ¢1,... ¢, are affine,
then the dual of the dual is the primal

This is proved by viewing the minimization problem in terms of a
bifunction. In this framework, the dual function corresponds to the
conjugate of this bifunction (for more, read Chapters 29 and 30 of
Rockafellar)
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