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9.1 KKT conditions

For general optimization problem:

min
x
f(x), subject to hi(x) ≤ 0, i = 1, ...,m, lj(x) = 0, j = 1, ..., r (9.1)

The Karush-Kuhn-Tucker conditions or KKT conditions are:

• Stationarity: 0 ∈ ∂
(
f(x) +

∑m
i=1 uihi(x) +

∑r
j=1 vj lj(x)

)
• Complementary slackness: ui · hi(x) = 0,∀i

• Primal feasibility: hi(x) ≤ 0, lj(x) = 0,∀i, j

• Dual feasibility: ui ≥ 0,∀i

Theorem 9.1 Sufficiency and necessity of KKT conditions for characterizing optimal solutions:

• Necessity: If x∗, u∗ and v∗ are optimal solutions for primal and dual with zero duality gap (e.g., convex
problem and there exists x strictly satisfying non-affine inequality constraints), then x∗, u∗ and v∗ satisfy
the KKT conditions.

• Sufficiency: If x∗, u∗ and v∗ satisfy the KKT conditions, then x∗, u∗ and v∗ are optimal solutions for
primal and dual.

Proof:

• Necessity (Optimality ⇒ KKT)

Let x∗ and u∗, v∗ be primal and dual solutions with zero duality gap (strong duality holds). Then

f(x∗) = g(u∗, v∗)

= min
x
f(x) +

m∑
i=1

u∗i hi(x) +

r∑
j=1

v∗j lj(x)

≤ f(x∗) +

m∑
i=1

u∗i hi(x
∗) +

r∑
j=1

v∗j lj(x
∗)

≤ f(x∗)

(9.2)
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which means all the inequalities are equality here. We learn:

– From the second inequality being equality, we know the point x∗ minimizes L(x, u∗, v∗) over
x ∈ R. Hence the subdifferential of L must contain 0 at x = x∗, i.e., stationarity holds.

– From the first inequality being equality, we must have
∑m
i=1 u

∗
i hi(x

∗) = 0, i.e., complementary
slackness holds.

– Primal and dual feasibility hold as the optimal solutions are feasible.

Therefore, we have the optimal solutions satisfy the KKT conditions

• Sufficiency (KKT ⇒ Optimality)

Consider x∗, u∗, v∗ that satisfy the KKT conditions, then

g(u∗, v∗) = f(x∗) +

m∑
i=1

u∗i hi(x
∗) +

r∑
j=1

v∗j lj(x
∗)

= f(x∗)

(9.3)

where the first equality holds from stationarity, and the second holds from complementary slackness
and primal feasibility.

Therefore, we have the points that satisfy the KKT conditions are optimal solution for the problem.

Note that this KKT conditions are for characterizing global optima. There are other versions of KKT
conditions that deal with local optima.

For unconstrained problems, the KKT conditions reduce to subgradient optimality condition, i.e.,

0 ∈ ∂f(x∗) (9.4)

And for general convex problems, it’s equivalent to the subgradient optimality condition of the sum of
objective function and indicator functions of the constraints, i.e.,

0 ∈ ∂f(x∗) +

m∑
i=1

N{hi≤0}(x
∗) +

r∑
j=1

N{lj=0}(x
∗) (9.5)
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9.2 Examples

Quadratic with equality constraints

Consider Q � 0,

min
x

1

2
xTQx+ cTx subject to Ax = 0 (9.6)

KKT Conditions:

• L(x, u) = 1
2x

TQx+ cTx+ uTAx

• Stationary: ∇L(x, y) = 0⇒ Qx+ c+ATu = 0

• Complementary Slackness: ∅

• Feasibility: Ax = 0

If we combine stationary and feasibility, we will have:

(
Q AT

A 0

)(
x
u

)
=

(
−c
0

)
Water Filling

min
x
−

n∑
i=1

log(αi + xi) subject to x ≥ 0, 1Tx = 1 (9.7)

KKT Conditions:

• L(x, u, v) = −
∑n
i=1 log(αi + xi) + uT (−x) + v(1Tx− 1)

• Stationary: ∇L(x, u, v) = 0⇒ −1
αi+xi

− ui + v = 0, i = 1, ..., n

• Complementary Slackness: ui · xi = 0, i = 1, ..., n

• Feasibility: x ≥ 0, 1Tx = 1, u ≥ 0
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Support vector machines

min
β,β0,ξ

1

2
||β||22 + C

n∑
i=1

ξi subject to ξi ≥ 0, yi(x
T
i β + β + 0) ≥ 1− ξi, i = 1, ...n (9.8)

KKT Conditions:

• Stationary: 0 =
∑n
i=1 wiyi, β =

∑n
i=1 wiyixi, w = C1− v

• Complementary slackness: viξi = 0, wi(1− ξi − yi(xTi β + β0)) = 0, i = 1, ..., n

So we know β =
∑n
i=1 wiyixi at optimality and wi is nonzero only if yi(x

T
i β+β0) = 1−ξi. Then such points

i are called the support points:

• For support point i, if ξi = 0, then xi lies on edge of margin, and wi ∈ (0, C]

• For support point i, if ξ 6= 0, then xi lies on wrong side of margin, and wi = C

Lasso Support Recovery

min
β,α

1

2
||Xβ − y||2 + λ||α||1 subject to α = β (9.9)

KKT Conditions:

• L(β, α, u) = minβ,α
1
2 ||Xβ − y||

2 + λ||α||1 + uT (α− β)

• Stationary: ∇L(β, α, u) = 0⇒ XT (Xβ − y)− u = 0

−u ∈ λ∂||α||1 =

{
[−λ, λ], if α = 0
λ(α), otherwise

}
• Feasibility: α = β

And we have the followings conditions,

XT (Xsβ
∗
s − y) = u

ui ∈
{

[−λ, λ], if β∗i = 0
λsign(β∗i ), otherwise

}
where β∗i is the optimal βi.
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9.3 Constrained and Lagrange forms

Constrained form, where t ∈ R is a tuning parameter,

min
x
f(x), subject to h(x) ≤ t (9.10)

For the optimal solution x∗C , by stationarity of the KKT conditions we have

0 ∈ ∂f(x∗C) + u · ∂h(x∗C) (9.11)

Lagrange form, where λ ≥ 0 is a tuning parameter,

min
x
f(x) + λh(x) (9.12)

For the optimal solution x∗L, the subdifferential condition requires:

0 ∈ ∂f(x∗L) + λ · ∂h(x∗L) (9.13)

From these we see that x∗C and x∗L are characterized by the same equations. More rigorously, we have

• If the constrained problem is strictly feasible, then strong duality holds, and there exists some λ ≥ 0
such that any solution x∗ of the constrained problem minimizes

f(x) + λ · (h(x)− t) (9.14)

so x∗ is also a solution for the Lagrange problem.

• If x∗ is a solution for the Lagrange problem, then the KKT conditions for the constrained problem are
satisfied by taking t = h(x∗), so x∗ is also a solution for the constrained problem.

9.4 Usage of Duality and KKT conditions

• Duality gap: zero duality gap implies optimality as

f(x)− f(x∗) ≤ f(x)− g(u, v) (9.15)

This can also be a stopping criterion in algorithms.

• Solving the primal via the dual: Under strong duality, we know any primal solution x∗ solves

min
x
f(x) +

m∑
i=1

u∗i hi(x) +

r∑
j=1

v∗j lj(x) (9.16)

Often, solutions of this unconstrained problem can be expressed explicitly, thus giving an explicit
characterization of primal solutions from dual solutions. Further, if this solution is unique, we know it
must be the primal solution x∗.

Example:

min
x

n∑
i=1

fi(xi), subject to aTx = b (9.17)
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where each fi is smooth, strictly convex. We can find the dual function as

g(v) = bv −
n∑
i=1

f∗i (aiv) (9.18)

where f∗i is the conjugate of fi. The dual problem is

max
v

bv −
n∑
i=1

f∗i (aiv)⇔ min
v

n∑
i=1

f∗i (aiv)− bv (9.19)

This is a convex minimization problem with scalar variable, and is thus much easier to solve than the
primal.

Also, this additive form of objective function often comes from i.i.d data points, and is usually solved
by stochastic gradient descent. Meanwhile, the dual can usually be solved with stochastic coordinate
descent.

9.5 Dual norms, conjugate functions and dual cones

9.5.1 Dual norms

Definition 9.2 Dual norm ||x||∗:
||x||∗ = max

||z||≤1
zTx (9.20)

Examples:

• lp norm dual: (||x||p)∗ = ||x||q, where 1/p+ 1/q = 1

• Trace norm dual: (||X||tr)∗ = ||X||op = σ1(X)

Theorem 9.3 Dual norm of dual norm is the original norm, i.e.,

||x||∗∗ = ||x|| (9.21)

Proof: Consider the problem
min
y
||y||, subject to y = x (9.22)

whose optimal value is ||x||. Lagrangian:

L(y, u) = ||y||+ uT (x− y) = ||y|| − yTu+ xTu (9.23)

Maximizing L while maintaining primal feasibility (which by definition of || · ||∗ requires ||u||∗ ≤ 1), we have
the dual problem as

max
u

uTx, subject to ||u||∗ ≤ 1 (9.24)

The optimal value of the dual problem is, again, by definition of || · ||∗, ||x||∗∗. Thus, by strong duality we
have

||x|| = ||x||∗∗ (9.25)
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9.5.2 Conjugate functions

Definition 9.4 Conjugate function f∗ of f :

f∗(y) = max
x

yTx− f(x) (9.26)

Properties:

• Always convex regardless of convexity of f(x)

• Fenchel’s inequality: f(x) + f∗(y) ≥ xT y

• Conjugate of conjugate: f∗∗ ≤ f

• If f is closed and convex, then

– f∗∗ = f

– x ∈ ∂f∗(y)⇔ y ∈ ∂f(x)⇔ f(x) + f∗(y) = xT y

• If f(u, v) = f1(u) + f2(v), then f∗(w, z) = f∗1 (w) + f∗2 (z)

Examples:

Simple quadratic

f(x) =
1

2
xTQx

f∗(y) =
1

2
yTQ−1y

Indicator function

f(x) = IC(x)

f∗(y) = I∗C(y) = max
x∈C

yTx

Norm

f(x) = ||x||

f∗(y) = Iz:||z||∗≤1(y)

Lasso Dual

Remember the lasso problem:

min
β

1

2
||y −Xβ||22 + λ||β||1

Its dual function is equal to f∗. First, we will change primal into another format:
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min
β,z

1

2
||y − z||22 + λ||β||1 subject to z = Xβ

where dual function (so f∗) will be the following:

g(u) = min
β,z

1

2
||y − z||22 + λ||β||1 + uT (z −Xβ)

=
1

2
||y||22 −

1

2
||y − u||22 − Iv:||v||∞≤1(XTu/λ)

(9.27)

Conjugates also appear frequently in derivation of dual problems, via

−f∗(u) = min
x
f(x)− uTx (9.28)

in minimization of the Lagrangian.

For example, consider
min
x
f(x) + g(x) (9.29)

The dual problem is
max
u
−f∗(−u)− g∗(−u) (9.30)

We can find the dual of indicator functions and norms with the last equation.

Dual formulation can also help us by “shifting” a linear transformation between one part of the objective
and another. Consider

min
x
f(x) + g(Ax) (9.31)

By reparameterizing z = Ax, we have the dual problem as

max
u
−f∗(ATu)− g∗(−u) (9.32)

9.5.3 Dual cones and polar cones

Definition 9.5 For a cone K ⊆ Rn, its dual cone K∗:

K∗ = {y : yTx ≥ 0,∀x ∈ K} (9.33)

Examples:

Linear subspace : The dual cone of a linear subspace V is its orthogonal complement V ⊥.

Norm cone : The dual cone of the norm cone is the norm cone of its dual norm.

K = {(x, t) ∈ Rn+1 : ||x|| ≤ t}

K∗ = {(y, s) ∈ Rn+1 : ||y||∗ ≤ s}
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Positive semidefinite cone : The convex cone Sn+ is self-dual meaning (Sn+)∗ = Sn+.

For the cone constrained problem
min
x
f(x), subject to Ax ∈ K (9.34)

By denoting K∗ as the dual cone of K, we can write the dual problem as

max
u
−f∗(ATu), subject to u ∈ K∗ (9.35)

Definition 9.6 For a cone K ⊆ Rn, its polar cone Ko:

Ko = {y : yTx ≤ 0,∀x ∈ K} (9.36)

Following from the Moreau Decomposition, we have for any x,

x = ProjK(x) + ProjKo(x) (9.37)


