Intro to online learning: Learning from expert advice.

University of California, Santa Barbara

May 29, 2019

Overview

(1) Review of optimizatio
(2) Online learning
(3) Online learning algorithms

Review of optimization

$$
\begin{equation*}
\min _{\theta \in \mathcal{C}} f(\theta) \tag{1}
\end{equation*}
$$

Here \mathcal{C} is a convex set and $f(\cdot)$ is a convex function We care about the complexity

$$
\begin{equation*}
f\left(\theta^{k}\right)-f\left(\theta^{*}\right) \leq \epsilon \tag{2}
\end{equation*}
$$

If $k=\log \frac{1}{\epsilon}$, it is linear convergence

Complexity Table

	convex	+ smooth	+ strong convex
gradient	$\frac{1}{\epsilon^{2}}$	$\frac{1}{\epsilon} \rightarrow \frac{1}{\sqrt{\epsilon}}$	$\frac{L}{m} \log \frac{1}{\epsilon} \rightarrow \sqrt{\frac{L}{m}} \log \frac{1}{\epsilon}$
SGD	$\frac{1}{\epsilon^{2}}$	$\frac{1}{\epsilon^{2}}$	$\frac{1}{m \epsilon}$
finite sum + SGD	$\frac{1}{\epsilon^{2}}$	$n+\frac{1}{\epsilon} \rightarrow \frac{1}{\sqrt{\epsilon}}$	$\left(n+\frac{L}{m}\right) \log \frac{1}{\epsilon} \rightarrow\left(n+\sqrt{\frac{L}{m}}\right) \log \frac{1}{\epsilon}$

Table: Complexity of first order methods

Not covered

- Second order method: LBFGS, quasi-newton
- Non-convex optimization: have to convexify or adding noise to escape from local solutions
- How about DNN: too many local/global solutions!

Online learning

- Problem statement for statistical learning: Given any dataset $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ iid from \mathcal{D}. To find $\mathcal{H}: X \rightarrow Y$
- Reliable setting: $\exists h^{*} \in \mathcal{H}$ s.t. $\mathbf{P}\left(h^{*}(x)=y\right)=1$
- Error error $(f)=\mathbb{E} \mathbf{1}(h(x) \neq y) \approx \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(h\left(x_{i}\right) \neq y_{i}\right)$
- Online learning:
(1) set x_{1}, choose $h_{1} \in \mathcal{H}$, such as $\hat{y}_{1}=h_{1}\left(x_{1}\right)$,
(2) set x_{2}, choose $h_{2} \in \mathcal{H}$, such as $\hat{y}_{2}=h_{2}\left(x_{2}\right), \ldots$

The cumulative loss $\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left(\hat{y}_{i} \neq y_{i}\right)$

- Design algorithm such that $M(A) \leq \mathcal{O}(n)$
- Example: $X \in\{0,1\}^{d}, Y \in\{0,1\}, h=x(1)$ or $x(4)$ or $x(16)$

Algorithm 1: Online ERM/FTL

- $V_{1}=H$
- for $t=1,2, \ldots, n$:
(1) receive x_{t}, pick any $h \in V_{t}$
(2) predict $\hat{y}_{t}=h\left(x_{t}\right)$
(3) Receive y_{t}
(9) loss $\mathbf{1}\left(\hat{y}_{t} \neq y_{t}\right)$ Update $V_{t+1}=\left\{h \in V_{t}, h\left(x_{t}\right)=y_{t}\right\}$
- Convergence speed: $1 \leq\left|V_{t}\right| \leq|H|-M_{t}$, so $M_{t} \leq|H|-1$

Algorithm 2: Majority voting (Halving)

- $V_{1}=H$
- for $t=1, \ldots, n$
(1) Receive x_{t}
(2) Majority voting: for any $h \in V_{t}, \hat{y}_{t}=\arg \max \sum_{h} \mathbf{1}\left(h\left(x_{t}\right)=y_{t}\right)$
(3) Receive y_{t}
(9) Update $V_{t+1}=\left\{h \in V_{t}, h\left(x_{t}\right)=y_{t}\right\}$
- $1 \leq\left|V_{t}\right| \leq|H| \frac{1}{2}{ }^{m_{t}}$, so $m_{t} \leq \log _{2}(|H|)$

Agnostic online learning

If there does not exist a h such that $h\left(x_{i}\right)=y_{i}, \forall i=1, \ldots, n$

$$
\begin{equation*}
\operatorname{regret}(h)=\sum_{i=1}^{n} \mathbf{1}\left(y_{t}=h_{t}\left(x_{t}\right)\right)-\min _{h \in \mathcal{H}} \sum_{i=1}^{n} \mathbf{1}\left(y_{t} \neq h\left(x_{t}\right)\right) \tag{3}
\end{equation*}
$$

Example: stock prediction, Google

	Dearaj	Omid	Yuqing	Paul the Octopus	Truth
Day 1	Down	Up	Up	Down	Down
Day 2	Up	Up	Down	Down	Down
Day 3	Up	Down	Up	Up	Up
Day 4					

Table: Choices of expert

	Dearaj	Omid	Yuqing	Paul the Octopus
Day 1	1	1	1	1
Day 2	1	$\frac{1}{2}$	$\frac{1}{2}$	1
Day 3	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{2}$	1
Day 4	$\frac{1}{2}$	$\frac{1}{8}$	$\frac{1}{2}$	1

Algorithm 3: Weighted majority

- M : Number of mistakes
- m: Number of mistakes of the best expert
- n : Number of expert
- $W_{t}=\sum_{i=1}^{n} w_{i t}, W_{1}=n$, and $W_{t+1} \leq W_{t}\left(1-\frac{1}{4}\right)$

$$
\begin{equation*}
\left(\frac{1}{2}\right)^{m} \leq W \leq n\left(\frac{3}{4}\right)^{m} \tag{4}
\end{equation*}
$$

- $M \leq-\frac{\log 1 / 2}{\log 3 / 4} m+\frac{\log n}{\log 3 / 4}$

ϵ-weighted majority

$$
\begin{equation*}
W_{i_{t+1}}=W_{i t}(1-\epsilon) \text { if } \hat{y}_{i t} \neq y_{t} \tag{5}
\end{equation*}
$$

Then

$$
\begin{align*}
& (1-\epsilon)^{m} \leq W \leq m\left(1-\frac{1}{2}(1-\epsilon)\right)^{m} \tag{6}\\
& m \log (1-\epsilon) \leq \log m+m \log \left(\frac{1}{2}+\frac{1}{2} \epsilon\right) \tag{7}\\
& M \leq \frac{-\log (1-\epsilon)}{-\log \left(\frac{1}{2}+\frac{1}{2} \epsilon\right)} m+\frac{\log n}{-\log \left(\frac{1}{2}+\frac{1}{2} \epsilon\right)} \leq 2(1+\epsilon) m+\mathcal{O}(\log m) \tag{8}
\end{align*}
$$

Algorithm 4: randomized weighted majority (RWM)

- Set $W_{1}^{(i)}=1$ for all i
- for $t=1, \ldots, T$,

$$
\text { Output }=\left\{\begin{array}{cc}
U p & \text { with probability } \frac{\sum_{i} W^{i} \mathbf{1}\left(y_{t}^{i}=u p\right)}{W^{i}} \\
\text { Down } & \text { Otherwise }
\end{array}\right.
$$

Analysis

- $F_{t}=\frac{\sum_{i=1}^{n} W_{t}^{i} 1\left(\hat{y}_{t}^{i} \neq y^{t}\right)}{W_{t}}, W_{t}=n\left(1-\epsilon F_{1}\right) \ldots\left(1-\epsilon F_{T}\right)$
- $m \log (1-\epsilon) \leq \log \left(W_{t+1}\right) \leq \log n+\sum_{i=1}^{n} \log \left(1-\epsilon F_{t}\right)$

$$
\leq \log n-\epsilon \sum_{t=1}^{T} F_{t}=\log n-\mathbb{E}(M)
$$

- $\mathbb{E}(M) \leq \frac{\log n}{\epsilon}+\frac{-\log (1-\epsilon)}{\epsilon} m \approx\left(1+\frac{\epsilon}{2}\right) m+\frac{\log n}{\epsilon} \leq m+\sqrt{\frac{m \log n}{2}}$
- The last equality holds when $\epsilon=\sqrt{\frac{2 \log n}{m}}$

Relationship with convex optimization

- Learning with expert: $\min \sum_{i} f_{i}\left(\theta_{i}\right)$
- $f_{i}\left(\theta_{i}\right)=\left\langle\theta_{i}, \ell\right\rangle=\mathbb{E}_{\theta_{i}}\left[l_{i}\right]$
- $C_{i} \sum \theta_{i}=1, \theta_{i} \geq 0$

