Intro to online learning: Learning from expert advice.

University of California, Santa Barbara

May 29, 2019

2 Online learning

$$\min_{\theta \in \mathcal{C}} f(\theta) \tag{1}$$

Here C is a convex set and $f(\cdot)$ is a convex function We care about the complexity

$$f(\theta^k) - f(\theta^*) \le \epsilon$$
 (2)

If $k = \log \frac{1}{\epsilon}$, it is linear convergence

	convex	+ smooth	+ strong convex
gradient	$\frac{1}{\epsilon^2}$	$rac{1}{\epsilon} ightarrow rac{1}{\sqrt{\epsilon}}$	$rac{L}{m}\lograc{1}{\epsilon} ightarrow \sqrt{rac{L}{m}}\lograc{1}{\epsilon}$
SGD	$\frac{1}{\epsilon^2}$	$\frac{1}{\epsilon^2}$	$\frac{1}{m\epsilon}$
finite sum + SGD	$\frac{1}{\epsilon^2}$	$n+rac{1}{\epsilon} ightarrowrac{1}{\sqrt{\epsilon}}$	$(n+\frac{L}{m})\log\frac{1}{\epsilon} \to (n+\sqrt{\frac{L}{m}})\log\frac{1}{\epsilon}$

Table: Complexity of first order methods

- Second order method: LBFGS, quasi-newton
- Non-convex optimization: have to convexify or adding noise to escape from local solutions
- How about DNN: too many local/global solutions!

- Problem statement for statistical learning: Given any dataset $(x_1, y_1), \ldots, (x_n, y_n)$ iid from \mathcal{D} . To find $\mathcal{H} : X \to Y$
- Reliable setting: $\exists h^* \in \mathcal{H} \text{ s.t. } \mathbf{P}(h^*(x) = y) = 1$
- Error $error(f) = \mathbb{E}\mathbf{1}(h(x) \neq y) \approx \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}(h(x_i) \neq y_i)$
- Online learning:
 - 1) set x_1 , choose $h_1 \in \mathcal{H}$, such as $\hat{y}_1 = h_1(x_1)$, 2) set x_2 , choose $h_2 \in \mathcal{H}$, such as $\hat{y}_2 = h_2(x_2)$, ... The cumulative loss $\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}(\hat{y}_i \neq y_i)$
- Design algorithm such that $M(A) \leq O(n)$
- Example: $X \in \{0,1\}^d$, $Y \in \{0,1\}$, h = x(1) or x(4) or x(16)

V₁ = H
for t = 1, 2, ..., n:
predict ŷ_t = h(x_t)
Receive y_t
loss 1(ŷ_t ≠ y_t) Update V_{t+1} = {h ∈ V_t, h(x_t) = y_t}
Convergence speed: 1 ≤ |V_t| ≤ |H| - M_t, so M_t ≤ |H| - 1

- $V_1 = H$
- for $t = 1, \ldots, n$
 - **1** Receive x_t
 - **2** Majority voting: for any $h \in V_t$, $\hat{y}_t = \arg \max \sum_h \mathbf{1}(h(x_t) = y_t)$
 - 3 Receive y_t
 - Update $V_{t+1} = \{h \in V_t, h(x_t) = y_t\}$
- $1 \leq |V_t| \leq |H| rac{1}{2}^{m_t}$, so $m_t \leq \log_2(|H|)$

If there does not exist a h such that $h(x_i) = y_i, \forall i = 1, ..., n$

$$regret(h) = \sum_{i=1}^{n} \mathbf{1}(y_t = h_t(x_t)) - \min_{h \in \mathcal{H}} \sum_{i=1}^{n} \mathbf{1}(y_t \neq h(x_t))$$
(3)

Example: stock prediction, Google

	Dearaj	Omid	Yuqing	Paul the Octopus	Truth
Day 1	Down	Up	Up	Down	Down
Day 2	Up	Up	Down	Down	Down
Day 3 Day 4	Up	Down	Up	Up	Up
Day 4					

Table: Choices of expert

	Dearaj	Omid	Yuqing	Paul the Octopus
Day 1	1	1	1	1
Day 2	1	$\frac{1}{2}$	$\frac{1}{2}$	1
Day 3	$\frac{1}{2}$	$\frac{\overline{1}}{4}$	$\frac{\overline{1}}{2}$	1
Day 4	$\frac{1}{2}$	$\frac{1}{8}$	$\frac{1}{2}$	1

Table: Weights of expert

- M: Number of mistakes
- m: Number of mistakes of the best expert
- n: Number of expert

•
$$W_t = \sum_{i=1}^n w_{it}$$
, $W_1 = n$, and $W_{t+1} \le W_t (1 - \frac{1}{4})$

$$(\frac{1}{2})^m \le W \le n(\frac{3}{4})^m \tag{4}$$

• $M \leq -\frac{\log 1/2}{\log 3/4}m + \frac{\log n}{\log 3/4}$

$$W_{i_{t+1}} = W_{it}(1-\epsilon) \text{ if } \hat{y}_{it} \neq y_t \tag{5}$$

Then

$$(1-\epsilon)^m \le W \le m(1-\frac{1}{2}(1-\epsilon))^m \tag{6}$$

$$m\log(1-\epsilon) \le \log m + m\log(\frac{1}{2} + \frac{1}{2}\epsilon)$$
 (7)

$$M \leq \frac{-\log(1-\epsilon)}{-\log(\frac{1}{2}+\frac{1}{2}\epsilon)}m + \frac{\log n}{-\log(\frac{1}{2}+\frac{1}{2}\epsilon)} \leq 2(1+\epsilon)m + \mathcal{O}(\log m)$$
(8)

Algorithm 4: randomized weighted majority (RWM)

• Set
$$W_1^{(i)} = 1$$
 for all i
• for $t = 1, ..., T$,
 $Output = \begin{cases} Up & \text{with probability } \frac{\sum_i W^i \mathbf{1}(y_t^i = up)}{W} \\ Down & \text{Otherwise} \end{cases}$

....

•
$$F_t = \frac{\sum_{i=1}^n W_t^i \mathbf{1}(\hat{y}_i^i \neq y^t)}{W_t}$$
, $W_t = n(1 - \epsilon F_1) \dots (1 - \epsilon F_T)$
• $m \log(1 - \epsilon) \leq \log(W_{t+1}) \leq \log n + \sum_{i=1}^n \log(1 - \epsilon F_t)$
 $\leq \log n - \epsilon \sum_{t=1}^T F_t = \log n - \mathbb{E}(M)$
• $\mathbb{E}(M) \leq \frac{\log n}{\epsilon} + \frac{-\log(1-\epsilon)}{\epsilon}m \approx (1 + \frac{\epsilon}{2})m + \frac{\log n}{\epsilon} \leq m + \sqrt{\frac{m \log n}{2}}$
• The last equality holds when $\epsilon = \sqrt{\frac{2 \log n}{m}}$

- Learning with expert: min $\sum_i f_i(\theta_i)$
- $f_i(\theta_i) = \langle \theta_i, \ell \rangle = \mathbb{E}_{\theta_i}[I_i]$
- $C_i \sum \theta_i = 1, \theta_i \ge 0$