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Outline

* Universal Dynamic Regret in online learning

* Motivation and application
* New results for curved loss functions

* Optimal Universal Dynamic Regret
* Lower bound via non-parametric regression
e Algorithm and proof sketch
* From improper to proper learning

* Optimal Dynamic Regret in LQR Control

* Open problems / future work
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our daily life -

. campaigns systems
Optical character ¢ ;
recognition L, FREOPOL

i

o|2A3%541 VOTE
all 132720241

s §=§¢zzz*§g -
‘ 0l %SZ?‘Z
012134567879

Machine Learning
Applications

Recommendation
engines

AL

L.

Personal assistants:
Google Now,

Microsoft Cortana,
Apple Siri, etc.

GO gle AdS Autonomous (“self-

Filtering driving”) vehicles

algorithms/
news feeds

Advertising
and business
intelligence

2 Zillow it Osave (Tyshare oooMore X Close

3bd | 3ba 1,417 sqft

123 Main Street, Las Vegas, NV 89148 Machine Learning Kaggle
Off market | Zestimate®: $266,436 | Rent Zestimate® §1,525 /mo

Est. refi payment: $1,277/mo @) See current rates

f= Home value Comparable homes Waystosell Owner tools >

Sell to Zillow for your Zestimate
Qualifying homes get a competitive cash offer.

$266,500




Most theory of ML relies on
stochastic assumptions on data-
generating processes

* Parametric / Bayesian methods: model the data
generating process up to some parameters

* Nonparametric statistics: Consider very broad families
of distributions where the data can be coming from.

e Statistical Learning Theory:
e Assume data drawn iid (from any distribution)

What if the data are not drawn iid or even stochastic?



Online learning --- a powerful
learning paradigm that makes no
stochastic assumptions

The Online Learning setting
@ Foreacht e [n]:={1,...,n}, learner predicts x; € D C R?.

@ Adversary reveals a loss function f; : R — R

Example: f.(z) = (StockPrice, — Feature; x)?

(Static) Regret: Compete with any fixed w € YW C D chosen

in hindsight: n n
Ro(w) = fi(x¢) = > fi(w)
t=1 t=1

* Excellent treatment on this subject by Vovk, Lugosi, Ceca-
Bianchi, Hazan, Shalev-Schwartz, Orabona et al...




Well-known results on no-regret
online learning

Convex losses O ( \/ﬁ)

Strongly convex ]
losses @( 08 n)

Exp-concave losses © (lOg n)

* various problem parameters omitted for simplicity.

* Excellent treatment on this subject by Vovk, Lugosi, Ceca-
Bianchi, Hazan, Shalev-Schwartz, Orabona et al...



Nonstationarity “Change is the
only constant in life”
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* Viruses mutate. A drug that passes a clinical trial in 2020 may
become ineffective in 2021.

* Trendy topics change over time. Language models trained on
older data may struggle to remain relevant.

* Stock prices are affected by events. A trading strategy can work
amazingly well in one period but fail miserably when market
condition changes.



Static Regret Bound is not so useful in
nonstationary environments

CORONAVIR 1,600
TSLA 5/13/2020 RECESSION

. Tesla stock price 2011-2021

(taken from Reddit)

Best linear prediction in hindsight



Can we handle nonstationarity without
modeling the world? Yes, by Universal
Dynamic Regret Minimization

The Online Learning setting
@ Foreacht e [n]:={1,...,n}, learner predicts x; € D C RY.

@ Adversary reveals a loss function f; : R — R

Example: f,(x) = (StockPrice, — Feature; z)?

Goal: Learner aims to control its dynamic regret against any sequence
of comparators wy,... w, where w; €¢ W C D for all t.

Ro(Wi,...,wp) =) fi(X;) — fi(wy),
=1




Proper learning vs improper
earning

* Benchmark set W, Decision setD
Learning is said to be proper when W = D.

Learning is said to be improper when W C D.

* In the first part our our results we consider
improper learning 9




Several burning questions

1. How does this address non-stationarity?

More on this after seeing the results!
2. The worst-case dynamic regret seems linear?
3. Why qualifying it with “Universal”?

4. What are your new results?

5. Connections to “adaptive regret”?

Later, in the proof!



Dynamic regret is parameterized by
oroperties of each comparator
sequence.

Ro(W1,...,wn) =Y fi(x:) — fi(wy),
=1

* Worst-case dynamic regret is linear.

* Often parameterized by how much the comparator
sequence changes over time, i.e., total variation.



Why “universal”? Because we want
to simultaneously compete with all
comparator sequences

* It implies an “Oracle Inequality”

th zt) < mm th wt) + RegretBound(ws.,)

.....

t=1 "i=1
| | | . v

| |
Our performance Comparator performance Dynamic regret

* This is in contrast to the “restricted dynamic regret”
Z ft (xt) — Z ft (wf) where wy = argmin,, f;(w)
t=1 t=1

*The restricted version were considered in (Besbes et al, 2013)
(Jadbadie et al., 2016) under different feedback models.



Jniversal vs
Regret in On

* Example:

Restrictive

Ine Linear

Dynamic

Regression

fi(x) = (StockPrice; — Feature! z)?

* Restrictive Dynamic regret competes with an unrealistic
oracle that achieves 0 loss, but incur O(n) regret

* Universal dynamic regret competes with more stable

policies with sublinear loss and regret

* Fundamental values change slowly
e Optimal bias-variance tradeoff



Existing results on dynamic regret
minimization since Zinkevich (2003)

. Dynamic Regret

The case with unknown

Convex losses @(\/ﬁ) @(\/n(l 4+ Cn))<_ C,, was resolved in

(Zhang and Zhou, 2018).

Strongly @(lOg n)

convex |osses Open Only minor improvement
problem T known (Yuan and Lamperski,
Exp-concave 2019) O(1 + /nC
losses @(log n) (1++v/nCh)

* various problem parameters omitted for simplicity.



Fast rates under exp-concave losses
are useful. Many useful applications
satisty exp-concavity!

* Example 1: Online Nonparametric Regression
felx) = (yr — x4)> where yp = 0y + N(0, 0?)

* Example 2: Online Linear Regression

fi(x) = (StockPrice; — Feature; z)?
* Example 3: Online Logistic Regression

fi(2) = log(1 + e~vileatureray gy e {~1.1)
* Example 4: Universal Portfolio Selection

fi(x) = log(:cTrt)

*weak assumption e.g., boundedness often needed.



Summary of our new results ~

. Dynamic Regret

Convex losses @(\/ﬁ) @(\/n(l + Ch))

Stongly 9 (logn) O(n/3C23 v 1)

convex losses

Exp-concave

losses @(10g TL) é(nl/‘scz/?, V1)

* various problem parameters omitted for simplicity.

Dheeraj Baby

(Baby and W., COLT’21
Best Student Paper)

- Improper learning.

- need smoothness

- extra d dependence

(Baby and W., AISTATS’22)
+ Proper learning

+ No smoothness &
Optimal dim dep for
strongly convex cases.

- only for box constraints
for exp-concave losses



Now how does this address non-

stationarity?

* It is fully agnostic and it does not

make

assumptions about the type of non-stationarity

Trend
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Outline

* Optimal Universal Dynamic Regret
* Lower bound via non-parametric regression
e Algorithm and proof sketch
* From improper to proper learning

* Optimal Dynamic Regret in LQR Control

* Open problems / future work



Dynamic regret is parameterized
by the total variation of the
comparator sequence

n
Cn(Wq,...,Wp) = ZH Wi — W[4 Dheeraj Baby
t=1

Theorem 1 (simplified): (Baby and W., 2021)

For exp-concave and smooth losses, there is an efficient improper
online algorithm, s.t.

Our performance Comparator performance Dynamic regret

21



Connection to locally adaptive
non-parametric regression

0 8R.o c p

@9";" f-,“‘:. N .:.0

ft(xt) — (yt _ xt)2 : OO : O%o %
o o)

where ¥ = 0 + N (0, 02) 6

Take w1, ...,w, =01, ...,0,

n

> g —m)> <Y (g — 0)> + O(n'PCr (61, ..., 60)°)

t=1
take expectation* divide by n

1 n
MSE E[- > (e — 012 = O(n 30, (01, .., 02)*/%)
t=1

Optimal rate for estimating functions in TV class!

22



't is more flexible than the standard
nonparametric regression, because

* No statistical assumptions
* No hyperparameter / adaptively optimal
* More general loss functions

* Can be used for online forecasting



Another interesting lower bound
from nonparametric regression

* OGD with any learning rate schedule are Linear
Estimators for the non-parametric regression problem.
(Baby and W., NeurlIPS’19)

* The lower bound by Donoho, Liu, MacGibbon (1990) =>
Restarting-OGD and Ader require Q(,/nCn) regret!

» Cannot achieve the optimal n/3¢>/>

* Those methods that achieve this rate is known as “locally
adaptive” methods, e.g., wavelets, adaptive kernels, adaptive
splines, trend filtering etc.



Separation of non-adaptive and
adaptive methods on this problem,
numerically...
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Application to “Online Trend Removal”
in COVID hospitalization forecasting

Daily COVID cases in. Florida
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(Baby, Zhao and W., AISTATS’21)
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Proof highlig
Strongly Ada

nts: Adaptive Regret and

otive Online Learner

* Adaptive Regret Minimization (Hazan and Seshadhri, 2009)
(Daniely, Gonen, Shalev-Shwartz, 2015)

* Follow the Leading History (FLH)

* (Essentially) running multiplicative weights over an ensemble of Online
Learners that starts at every time step.

* Our algorithm: FLH with Online-Newton-Step

* For exp-concave losses, FLH-ONS achieves an 5(1) static
regret of on all intervals at the same time!

Adaptive Regret

/

27



Proof highlights: (TV-Constrained)
Oftline Optimal Comparator

* For each C,; = 0, the offline optimal is solution to

min Z ft (Ut>
t=1

Ul:n
s.t. Z |Ut — Ut_1| S Cn
t=2

lu| < Bfort=1,2,...,m

* It suffices to bound the dynamic regret against
offline optimal for each C,,

Ry (wi.n) < Ry, (U7

* For all wy.,, satisfying the total variation bound C,,



Proof highlights: KKT conditions of
the offline optima

* The solution is somewhat special in that it satisfies
a set of KKT conditions.

o stationarity: Vfi(us) = A(sg —si—1) +v, — 7,

o complementary slackness: (a) A\ (>, _,|us —us_1|—Cp) =0;
(b) v; (w + B) = 0 and v/ (us — B) = 0,

* Gives rise to interesting combinatorial properties

29



Proof highlights: Adaptive Partition

* Let the following be the offline optimal comparator

VAV 2

[?][ I 10 Il Il Il ]

f
Bin 1 Bin M

We construct a partitioning of [n] into M bins as follows
{s, 14, ..., [is, it], - - ., [Ms, My]} satisfying:

@ C; = Z,':’;_/:|Uj+1 — u;|< B/\/niwhere nj .= iy —is+1, i € [M].
o Number of bins obeys M = O(n'/3C2/°B~2/3 v 1),

Suffices to prove the dynamic regret in each bin is 0(1). 30



Proof highlights: Regret Decomposition

One-step Gradient Descent

Rn(Cp) <) Z fe(we) = felt; —nV Y fo (W)

By Strong Adaptivity Ty ; = O(B? log n).

1=1 t=14 t/:is
T4
M 1t (27
+ Z Z fe(u; — nV Z fe(4;)) — f:(4;) By Descent Lemma Ty; < _Q”v”z
i=1 t=i, t =i P 2
To i
M i
4+ Z Z fo(@) — fie(uy) By KKT conditions
i=1 t=i, ) Tz < niC? + 3)\C;
Ts.i < B? +3)C,

* T, ; is not always strictly negative. T3 ; is often very large. Turns out that there is a magical
refinement of the partition such that T, ; is sufficiently negative when we need it be.

** The first time KKT conditions across time-steps are exploited in online learning.



A flavor of the splitting rules (for the
square loss cases, without
boundedness constraints)

/

Asi=0

As; #0 Not monotonic Monotonic
(A2) si, =1 si, = —1 si, = —1 si =1
case (a) si,—1=1 Si,—1=— si,—1=-—1 si,—1=1
Non-decreasing Non-increasing Non-decreasing Non-increasing

case (b) and (¢)

case (b) and (c¢)

(A

Similar to (A1)

Figure 3: Various configurations of the optimal sequence within a bin [is, ;| with As; = 0. The leaf nodes indicate the
labels of the paragraphs in the Proof of Theorem I to handle each scenario.

e Case (a) (b) (c) can be directly bounded.
e Case (A1) (A2) can be converted into case(a) (b) (c) while doubling # of bigmzs.



Challenges of proper learning

* The KKT conditions becomes more complex

* Projected one-step gradient descent does not
provide sufficiently negative T,

* Splitting of the bins becomes a lot more involved

* Turn out we can only solve for the cases with box-
constraints --- one coordinate at a time.

Baby and W. (2022). Optimal dynamic regret in proper online learning with
strongly convex losses and beyond.

33



Box constrained proper learner + a
surrogate loss technique from (Cutkosky
and Orabona, 2018) suffices to solve
general proper learning!

* |n each iteration:

1. Get prediction x; from box- D
constrained learner

2. Play #: = Ilw(x¢) := argmingcyy||z: — yl|1.
3. Getloss f;

4. Construct surrogate loss £;(x) = fi(z)+G-S(x),
where S(x) := ||z — Iy (x)||1.

=
~

5. Pass the surrogate loss to the box-

constrained learner.
Addlng ”xt — ﬁtlll to the

surrogate loss.

34



Outline

* Optimal Dynamic Regret in LQR Control

* Open problems / future work



Application to nonstochastic control

* Nonstochastic Control problem
Tiy1 = Az + Buy 4+ wy,

* Linear dynamic systems, known dynamics.
* Adversarial, but bounded disturbances
» Existence of strongly stable controller

* Goal minimize the “dynamic policy regret”:

alg alg M. M.
R(Mi.,) = Egtat — Lz Uy ),

36



State-of-the-arts in online
nonstochastic control problem

- General convex losses LQR losses

Static Regret O(\/ﬁ) O(]Og n)
Reduction to OCO with Reduction to online linear
Memory (Agarwal et al. regression with delay
19) (Foster and Simchowitz,
2020)
Universal Dynamic regret version of Dynamic regret version of
Dynamic OCO with memory *Proper* online linear
Regret O(\/n(l +Ch)) regression
mn o
O(nt/3C2%/3 v 1)
(Zhao, W., and Zhou, 21) (Baby and W., 2022b)

*C, is the total variation of the parameters of an arbitrary sequence of

Disturbance-Action Policies (DAPs).
37



Key technical challenge: Proper
_earning in Online “minibatched”
_Inear Regression

e Loss function of interest

ft (il?) — HAtZE — thQ Not strongly convex!

* Key idea: a new min-max barrier in CO-style
surrogate. Use box-constrained exp-concave result.

ProDR.control: Inputs - Decision set D, G > 0

1.
2.
3.

4,

At round ¢, receive w; from A.

Receive co-variate matrix A; := [a;1,...,a¢p]" .

Play w; € argmin,,p max; ol (x — wy)
Yy Wt g x€D 1=1,...,p1%t 4 t)l-

Let £4(w) = fi(w) + G - Sy(w), where fi(w) = [|Ayw — b;|5 and S(w) =

mingep max;—1,... p|at’i(af —w)|.

. Send /;(w) to A.




Outline

* Open problems / future work



Summary of our techniques and new
results on Universal Dynamic Regret

* Non-uniform bin splitting
* Regret decomposition

e KKT-conditions of offline optimal

+ Box-constraints proper learner

+ Refined analysis
+ CO’s surrogate loss idea

|S—

Improper learning under
= Exp-Concave losses
(Baby and W., 21)

Proper learning under
=  Strongly convex losses
(Baby and W., 22)

—

Proper learning under minibatch

+ Min-max barrier } linear regression losses
(Baby and W., 22a) => Apply to

LQR control

40



Remaining Open problems

Open Problem 1: Proper learning for general exp-
concave losses
* We know how to solve online generalized linear models
* We know how to solve online LQR-control.
e But universal portfolio remains out of reach...

Open Problem 2: Dimension-free bounds (RKHS)

* Dimension dependence required due to the L1
definition of TV.

* If we use the L2 version of Path Length, it could give
dimension-free bounds.



A broader perspective on dynamic
regret

Z ft (CCt) S min

Wy1yee.yWn
t=1

Z ft(w:) + RegretBound(wy.,)
t=1

* Why restricting to total variation / path length?

* Higher-order smoothness?  NeurlPS20 O(n*{1/(2k+3)}) higher-order
case “Online Trend Filtering”

In the pipeline: O(n”1/5) universal
dynamic regret for TV1 for exp-concave

. ..
Periodic >equences losses in full adversarial setting

* Other recurring / switching patterns



Adaptive online learning in statistical
methodology

* Apply dynamic regret / adaptive regret machinery
to more statistical problems.

* Provable guarantees without stochastic assumptions
* Works with general loss functions

» Often free of hyperparameters / highly adaptive



Thank you for your attention!
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