Adaptive Online Forecasting of Trends (a.k.a. towards *Online Trend Filtering*)

Yu-Xiang Wang

Based on joint work with Dheeraj Baby

Nonparametric regression

50+ years of associated literature

[Nadaraya, Watson, 1964]

- Kernels, splines, local polynomials
- Gaussian processes and RKHS
- CART, neural networks

 Also known as smoothing, signal denoising /filtering in signal processing & control.

Adapting to local smoothness

- Some parts smooth, other parts wiggly.
 - Wavelets [Donoho&Johnston,1998], adaptive kernel [Lepski,1999], adaptive splines [Mammen&Van De Geer,2001]
 - a.k.a, multiscale, multi-resolution compression, used in JPEG2000.
 - New comer: Trend filtering! [Steidl,2006; Kim et. al. 2009, Tibshirani, 2013; W.,Smola, Tibshirani, 2014]

Univariate trend filtering

$$\min_{\beta \in \mathbb{R}^n} \ \frac{1}{2} \|y - \beta\|_2^2 + \lambda \|D^{(k+1)}\beta\|_1$$

(figure extracted from: Tibshirani (2014))

A BIG Example: merger of two black holes

A BIG Example: merger of two black holes

A BIG Example: merger of two black holes

Theory behind trend filtering

(Tibshirani, 2014, Annals of Statistics)

• Observations:

$$y_i = f_0(x_i) + \epsilon_i, \quad i = 1, \dots n$$

• TV-class:

$$\mathcal{F}_k = \left\{ f : \text{TV}(f^{(k)}) \le C \right\}$$

• Error rate:

$$O_{\mathbb{P}}(n^{-(2k+2)/(2k+3)})$$

Best achievable rate for linear smoothers

$$O_{\mathbb{P}}(n^{-(2k+1)/(2k+2)})$$

Univariate trend filtering: does it solve the motivating application?

- L1-trend filtering (Kim et al, 2009)
 - Motivation: time series!
 - e.g., SnP500, CO2 emission, market demand

- Two major problems in time series:
 - Analysis: making senses of what happened.
 - Forecasting: predict the future

This talk: towards online trend filtering

- 1. Minimax rate for TV classes with an online estimator?
 - Stochastic environment + TV class
 - Stochastic environment + higher order TV class

- 2. Can we succeed in adversarial environments?
 - A reduction to strongly adaptive online learning
 - Universal dynamic regret and oracle inequalities
 - Adding covariates: Exponential concave losses and GLMs

"Online Nonparametric forecasting" in stochastic environments.

Individual sequence $\theta_1, \ldots, \theta_n \in \mathbb{R}$

- At each time step t = 1, ..., n
 - Prediction $\hat{\theta}_t$ is made by the forecaster
 - $y_t = \theta_t + \epsilon_t$, $\epsilon_t \sim iid \, \mathrm{subgauss}(0, \sigma^2)$ is revealed

Minimize the Total Squared Error (TSE): $R(n) = \sum_{t=1}^{n} E[(\hat{\theta}_t - \theta_t)^2]$

More difficult than batch problem where one observes all noisy data points before fitting the data

Bounded Variation Class

• Bounded variation sequences $\Theta = (\theta_1, \dots, \theta_n)^T \in \mathbb{R}^n$

where
$$||D\Theta||_1 = \sum_{t=2}^{n} |\theta_t - \theta_{t-1}| \le C_n$$

From trend filtering problems, this is the Total Variation class with k=0, d=1.

- Constrain the variation budget
- Features a rich class of sequences

Arrows: Adaptive Restarting Rule for Online averaging using Wavelet Shrinkage

- 1. Keep predicting online averages
- 2. Apply Wavelet Shrinkage to the sequence so far
- 3. If $\frac{1}{\sqrt{k}} \sum_{l=0}^{\log_2(k)-1} 2^{l/2} \|\hat{\alpha}(t_h:t)[l]\|_1 > \frac{\sigma}{\sqrt{k}}$
 - then "restart"
 - Otherwise keep going!

 By using wavelet soft-thresholding as the child smoother, our policy achieves the minimax rate:

$$\tilde{R}(n) = \tilde{O}(n^{1/3}\sigma^{4/3}C_n^{2/3} + ||D\Theta||_2^2)$$

- With nearly linear run-time of $O(n \log n)$
- Adapts to unknown Cn
- Adapts to the smaller Holder / Sobolev classes

How about higher order TV classes?

Adaptive Vovk-Azoury-Warmuth forecaster (AdaVAW)

1. Online least square (compete with the best polynomial fit)

$$\hat{y_t} = \langle \boldsymbol{x_t}, A_t^{-1} \sum_{s=t_h-k}^{t-1} y_s \boldsymbol{x_s} \rangle$$

2. Apply Wavelet Shrinkage to the sequence so far

$$\begin{split} & \text{Let } (y_1, y_2) = \text{pack}(\boldsymbol{y}_r) \\ & \text{Let } (\hat{\boldsymbol{\alpha}}_1, \hat{\boldsymbol{\alpha}}_2) = (T(\boldsymbol{W}\mathbf{y}_1), T(\boldsymbol{W}\mathbf{y}_2)) \end{split}$$

- 3. If $\|\hat{\alpha}_1\|_2 + \|\hat{\alpha}_2\|_2 > \sigma$
 - then "restart"
 - Otherwise keep going!

$$\operatorname{TV}^{k}(C_{n}) := \{\boldsymbol{\theta}_{1:n} \in \mathbb{R}^{n} : n^{k} \| D^{k+1} \boldsymbol{\theta}_{1:n} \|_{1} \leq C_{n} \}$$
$$\|\boldsymbol{\theta}_{1:n} \|_{\infty} \leq B :$$

AdaVAW achieves the minimax rate:

$$\tilde{O}\left(n^{\frac{1}{2k+3}}\left(C_n\right)^{\frac{2}{2k+3}}\right)$$

- Adapts to unknown Cn
- Adaptive fast rates: Number of knots J. O(J) error.
- Adapts to the smaller Holder / Sobolev classes

Key idea behind these algorithms and Interesting analogy to *online learning*

- n*MSE ←==→ Dynamic Regret
- Total variation ←==→ Path length
- Haar Wavelets ←==→ Geometric cover
- Online averaging ←==→ Online Gradient Descent

 Key ideas in the algorithm: adaptively determine the length of the history to use! Are there alternative approaches from online learning? Can we generalize our approach to handle a broader family of problems?

• Yes! We can obtain optimal TV denoising / fused lasso using "Strongly Adaptive Online Learning".

And we can get rid of the stochastic assumptions all together!

Baby, Zhao and W. (2021) "An Optimal Reduction of TV-Denoising to Adaptive Online Learning" AISTATS'21: https://arxiv.org/abs/2101.09438

Dynamic regret minimization in online learning

- For each $t \in [n] := \{1, \dots, n\}$, learner predicts $\boldsymbol{x}_t \in \mathcal{D} \subset \mathbb{R}^d$.
- Adversary reveals a loss function $f_t : \mathbb{R}^d \to \mathbb{R}$

Goal: Learner aims to control its dynamic regret against any sequence of comparators $\mathbf{w}_1, \dots \mathbf{w}_n$ where $\mathbf{w}_t \in \mathcal{W} \subseteq \mathcal{D}$ for all t.

$$R_n(\mathbf{w}_1,\ldots,\mathbf{w}_n):=\sum_{t=1}^n f_t(\mathbf{x}_t)-f_t(\mathbf{w}_t),$$

Dynamic regrets are parametrized by variation incurred by the comparator sequence

$$P_n(\mathbf{w}_1,\ldots,\mathbf{w}_n) = \sum_{t=1}^n ||\mathbf{w}_t - \mathbf{w}_{t-1}||_2$$

$$C_n(\mathbf{w}_1,\ldots,\mathbf{w}_n) = \sum_{t=1}^n ||\mathbf{w}_t - \mathbf{w}_{t-1}||_1$$

Brief history of dynamic regret problem

A Primer of Strongly Adaptive Online Learner

- Algorithms whose static regret in any local time window is controlled.
- Consider any interval $[i_s, i_t] := \{i_s, i_s + 1, \dots, i_t\} \subseteq [n]$. An SA algorithm achieves logarithmic static regret on $[i_s, i_t]$ when the losses are exp-concave.
- Achieved by hedging over a pool of base learners of n ONS instances where instance t starts working from time t.
- Examples of such methods include FLH from Hazan and Seshadhri (2007) and IFLH from Zhang et al. (2018b).

Optimal dynamic regret for exp-concave losses

Theorem 1 (exp-concave losses)

Let

$$R_n^+(C_n) := \sup_{\substack{m{w}_1,...,m{w}_n \in \mathcal{D}^- \ \sum_{t=2}^n \|m{w}_t - m{w}_{t-1}\|_1 \le C_n}} \sum_{t=1}^n f_t(m{x}_t) - f_t(m{w}_t),$$

By running FLH with learning rate α and base learners as ONS with decision set \mathcal{D} and parameter $\zeta = \min\left\{\frac{1}{4G^{\dagger}(2B\sqrt{d}+2G/\beta)}, \alpha\right\}$, we attain $R_n^+(C_n) = \tilde{O}\left(d^{3.5}(n^{1/3}C_n^{2/3}\vee 1)\right)$ if $C_n > 1/n$ and $O(d^{1.5}\log n)$ otherwise. Here $a\vee b:=\max\{a,b\}$ and $\tilde{O}(\cdot)$ hides dependence on the constants B,G,G^{\dagger},α and factors of $\log n$.

Exp-concave losses: why do they matter?

Definition: A twice differentiable function f is α -exp-concave *if and only if*

$$\nabla^2 f(\mathbf{x}) \succcurlyeq \alpha \nabla f(\mathbf{x}) \nabla f(\mathbf{x})^{\top}$$

Online linear regression: $f(x) = (y_i - \phi_i^T x)^2$

Portfolio optimization: $f(\mathbf{x}) = -\log(\mathbf{r}_t^{\top}\mathbf{x}).$

Now we can optimally compete with any arbitrary changing sequences of linear predictors / portfolio choices!

Back to TV denoising, but in an adversarial environment

- At time $t \in [n]$ learner predicts $x_t \in \mathcal{D} := [-B, B]$.
- Adversary reveals a label $y_t \in [-B, B]$.
- Learner suffers loss $(y_t x_t)^2$.

Define a non-parametric sequence class as:

$$\mathcal{TV}^B(C_n) := \left\{ w_{1:n} \middle| TV(w_{1:n}) := \sum_{t=2}^n |w_t - w_{t-1}| \le C_n, \ |w_t| \le B \ \forall t \in [n]
ight\}.$$

Learner aims to control:

$$R_n(C_n) := \sum_{t=1}^n (y_t - x_t)^2 - \inf_{w_1, ..., w_n \in \mathcal{TV}^B(C_n)} \sum_{t=1}^n (y_t - w_t)^2$$

Dynamic regret of SA learner

Theorem 2 (squared error losses)

Let x_t be the prediction at time t of FLH with learning rate $\zeta = 1/(8B^2)$ and base learners as FTL. Then for any comparator $(w_1, \ldots, w_n) \in \mathcal{TV}^B(C_n)$

$$\sum_{t=1}^{n} (y_t - x_t)^2 - (y_t - w_t)^2 = \tilde{O}\left(n^{1/3}C_n^{2/3}B^{4/3} \vee B^2\right),$$

where the labels obey $|y_t| \le B$, $\tilde{O}(\cdot)$ hides dependence on logarithmic factors of horizon n and $a \lor b := \max\{a, b\}$.

A new type of oracle inequality

Theorem 2 implies the following oracle inequality

$$\sum_{t=1}^{n} (y_t - x_t)^2 \leq \min_{w_1, \dots, w_n} \sum_{t=1}^{n} (y_t - w_t)^2 + \tilde{O}\left(n^{1/3} \text{TV}(w_{1:n})^{2/3} B^{4/3} \vee B^2\right).$$

- Fused Lasso denoiser attains the following oracle inequality: $\sum_{t=1}^{n} (u_t \hat{x}_t)^2 \leq \min_{w_1, \dots, w_n} \sum_{t=1}^{n} (u_t w_t)^2 + \tilde{O}_P \left(\lambda \text{TV}(w_{1:n})\right),$ (See (Guntuboyina et al., 2017; Ortelli and van de Geer, 2019))
- When $\lambda \approx n^{1/3}/C_n^{1/3}$, it implies the optimal statistical estimation rate of $\tilde{O}(n^{1/3}C_n^{2/3})$
- Our results don't require any statistical assumptions on y_t , eliminate the need to choose hyperparameter λ and also imply the same estimation rate achievable by the optimal choice of λ for the iid setting.

SA learner is reasonably practical even in an *offline* setting, matching optimally tuned fused lasso up to a constant.

SA learner beats Arrows in the online setting

Using SA learner to "online trend removal" for COVID hospitalization forecasts

Sketch of the proof: offline optimal sequence

Consider the offline convex optimization problem:

$$\min_{\tilde{u}_1,\ldots,\tilde{u}_n} \frac{1}{2} \sum_{t=1}^n (y_t - \tilde{u}_t)^2$$
s.t.
$$\sum_{t=1}^{n-1} |\tilde{u}_{t+1} - \tilde{u}_t| \le C_n$$

Let u_1, \ldots, u_n be the optimal primal variables and let $\lambda \geq 0$ be the optimal dual variable corresponding to the TV constraint.

The sequence u_1, \ldots, u_n will be referred as the offline optimal.

Adaptive partitioning of the sequence into bins according to the offline optimal comparator

We construct a partitioning of [n] into M bins as follows $\{[1_s, 1_t], \ldots, [i_s, i_t], \ldots, [M_s, M_t]\}$ satisfying:

- $C_i := \sum_{j=i_s}^{i_t-1} |u_{j+1} u_j| \le B/\sqrt{n_i}$ where $n_i := i_t i_s + 1$, $i \in [M]$.
- Number of bins obeys $M = O(n^{1/3}C_n^{2/3}B^{-2/3} \vee 1)$.

Regret decomposition into three terms

$$R_n(C_n) = \sum_{i=1}^{M} \underbrace{\sum_{j=i_s}^{i_t} (x_j - y_j)^2 - (y_j - \bar{y}_i)^2}_{T_{1,i}} +$$

$$\sum_{i=1}^{M} \sum_{j=i_{s}}^{i_{t}} (y_{j} - \bar{y}_{i})^{2} - (y_{j} - \bar{u}_{i})^{2} + \underbrace{\sum_{j=i_{s}}^{T_{o}} (y_{j} - \bar{y}_{i})^{2} - (y_{j} - \bar{u}_{i})^{2}}_{T_{o}} + \underbrace{\sum_{j=i_{s}}^{T_{o}} (y_{j} - \bar{y}_{i})^{2} - (y_{j} - \bar{u}_{i})^{2}}_{T_{o}} + \underbrace{\sum_{j=i_{s}}^{T_{o}} (y_{j} - \bar{y}_{i})^{2} - (y_{j} - \bar{u}_{i})^{2}}_{T_{o}} + \underbrace{\sum_{j=i_{s}}^{T_{o}} (y_{j} - \bar{y}_{i})^{2} - (y_{j} - \bar{u}_{i})^{2}}_{T_{o}} + \underbrace{\sum_{j=i_{s}}^{T_{o}} (y_{j} - \bar{y}_{i})^{2} - (y_{j} - \bar{u}_{i})^{2}}_{T_{o}} + \underbrace{\sum_{j=i_{s}}^{T_{o}} (y_{j} - \bar{y}_{i})^{2} - (y_{j} - \bar{u}_{i})^{2}}_{T_{o}} + \underbrace{\sum_{j=i_{s}}^{T_{o}} (y_{j} - \bar{y}_{i})^{2} - (y_{j} - \bar{u}_{i})^{2}}_{T_{o}} + \underbrace{\sum_{j=i_{s}}^{T_{o}} (y_{j} - \bar{y}_{i})^{2}}_{T_{o}} + \underbrace{\sum_{j=i_{s}}^{T_{o}} (y_{j} - \bar{y}_{i})^{2}}_{T_{o$$

$$\sum_{i=1}^{M} \underbrace{\sum_{j=i_s}^{i_t} (y_j - \bar{u}_i)^2 - (y_j - u_j)^2}_{T_{3,i}}$$

By Strong Adaptivity $T_{1,i} = O(B^2 \log n)$.

By KKT conditions

$$T_{3,i} \leq n_i C_i^2 + 3\lambda C_i$$

 $\leq B^2 + 3\lambda C_i$

Turns out that T2 can be very negative when we need it to be.

$$T_{2,i} = \sum_{j=i_s}^{i_t} (y_j - \bar{y}_i)^2 - (y_j - \bar{u}_i)^2$$
 is always negative.

 $T_{2,i} \leq -\frac{\lambda^2}{n_i}$ when $u_{i_s:i_t}$ is not isotonic.

Nice cancellation:
$$T_{1,i}+T_{2,i}+T_{3,i}\leq -\frac{\lambda^2}{n_i}+3\lambda C_i+\tilde{O}(B^2)$$

$$=-\left(\frac{\lambda}{\sqrt{n_i}}-\frac{3C_i\sqrt{n_i}}{2}\right)^2+\frac{9n_iC_i^2}{4}+\tilde{O}(B^2)$$

$$=\tilde{O}(B^2),$$

- Similarly $T_{1,i} + T_{2,i} + T_{3,i} = O(B^2)$ even when the sequence $u_{i_s:i_t}$ is isotonic.
- Summing across all $O(n^{1/3}C_n^{2/3}B^{-2/3}\vee 1)$ bins in the partition yields a regret of $\tilde{O}\left(n^{1/3}C_n^{2/3}B^{4/3}\vee B^2\right)$ of Theorem 2.

Conclusions

- Online locally adaptive nonparametric estimators that make sequential predictions while achieving the optimal rates for offline estimators.
- New techniques that show "strongly adaptive online learners" achieve an optimal dynamic regret for strongly convex and exponential concave losses.
- A lot of possibilities and open problems at the intersection of adaptive nonparametric regression and adaptive online learning.

Thank you for your attention!

References

- 1. Baby and W. "Online Forecasting of Total Variance Bounded Sequences" NeurIPS'19
- 2. Baby and W. "Adaptive Online Estimation of Piecewise Polynomial Trends" NeurIPS'20
- 3. Baby, Zhao and W. "An Optimal Reduction of TV-Denoising to Adaptive Online Learning" AISTATS'21
- 4. Baby and W. "Optimal Dynamic Regret in Exp-Concave Online Learning" COLT'21 Best Student Paper

