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Nonparametric regression

• 50+ years of associated literature
[Nadaraya, Watson, 1964]

• Kernels, splines, local polynomials
• Gaussian processes and RKHS
• CART, neural networks

• Also known as smoothing, signal denoising /filtering in signal 
processing & control.
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Adapting to local smoothness

• Some parts smooth, other parts wiggly.
• Wavelets [Donoho&Johnston,1998], adaptive kernel [Lepski,1999], adaptive splines
[Mammen&Van De Geer,2001]

• a.k.a, multiscale, multi-resolution compression, used in JPEG2000.

• New comer: Trend filtering! [Steidl,2006; Kim et. al. 2009, Tibshirani, 2013; W.,Smola,
Tibshirani, 2014]
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Univariate trend filtering
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A BIG Example: merger of two black holes
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Theory behind trend filtering

• Observations:

• TV-class:

• Error rate: 

• Best achievable rate for linear smoothers
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(Tibshirani, 2014, Annals of Statistics)



Univariate trend filtering: does it solve the motivating
application?
• L1-trend filtering (Kim et al, 2009)

• Motivation: time series!
• e.g., SnP500, CO2 emission, market demand

• Two major problems in time series:
• Analysis: making senses of what happened.
• Forecasting: predict the future
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This talk: towards online trend filtering

1. Minimax rate for TV classes with an online estimator?
• Stochastic environment + TV class
• Stochastic environment + higher order TV class

2. Can we succeed in adversarial environments?
• A reduction to strongly adaptive online learning
• Universal dynamic regret and oracle inequalities
• Adding covariates: Exponential concave losses and GLMs
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Individual sequence
• At each time step

• Prediction       is made by the forecaster
• is revealed

“Online Nonparametric forecasting” in
stochastic environments.

Minimize the Total Squared Error (TSE):

More difficult than batch problem where one observes all noisy data points before fitting the data
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• Bounded variation sequences

• Constrain the variation budget
• Features a rich class of sequences

Bounded Variation Class

From trend filtering problems, this is the Total Variation class with k=0, d=1.



Arrows: Adaptive Restarting Rule for Online
averaging using Wavelet Shrinkage

1. Keep predicting online averages

2. Apply Wavelet Shrinkage to the
sequence so far

3. If

• then “restart”
• Otherwise keep going!

Proposition 1. Online gradient descent with a fixed restart schedule is a linear forecaster. Therefore, it has a dynamic
regret of at least ⌦̃(

p
n).

Proof. First, observe that the stochastic gradient is of form 2(xt � yt) where xt is what the agent played at time t
and yt is the noisy observation ✓t + Independent noise. By the online gradient descent strategy with the fixed restart
interval and an inductive argument, xt is a linear combination of y1, ..., yt�1 for any t. Therefore, the entire vector of
predictions x1:t is a fixed linear transformation of y1:t�1. The fundamental lower bound for linear smoothers from
Donoho et al. (1998) implies that this algorithm will have a regret of at least ⌦̃(

p
n).

The proposition implies that we will need fundamentally new nonlinear algorithmic components to achieve the
optimal O(n1/3) regret, if it is achievable at all!

3.2 Policy
In this section, we present our policy ARROWS (Adaptive Restarting Rule for Online averaging using Wavelet Shrinkage).
The following notations are introduced for describing the algorithm.

• th denotes start time of the current bin and t be the current time point.

• ȳth:t denotes the average of the y values for time steps indexed from th to t.

• pad0(yth , ..., yt) denotes the vector (yth � ȳth:t, ..., yt � ȳth:t)T zero-padded at the end till its length is a power of 2.
i.e, a re-centered and padded version of observations.

• T (x) where x is a sequence of values, denotes the element-wise soft thresholding of the sequence with threshold
�
p

� log(n)

• H denotes the orthogonal discrete Haar wavelet transform matrix of proper dimensions

• Let Hx = ↵ = [↵1, ↵2, ..., ↵k]T where k being a power of 2 is the length of x. Then the vector [↵2, ..., ↵k]T can be
viewed as a concatenation of log2 k contiguous blocks represented by ↵[l], l = 0, ..., log2(k) � 1. Each block
↵[l] at level l contains 2l coefficients.

ARROWS: inputs - observed y values, time horizon n, std deviation �, � 2 (0, 1], a hyper-
parameter � > 24

1. Initialize th = 1, newBin = 1, y0 = 0

2. For t = 1 to n:

(a) If newBin == 1, predict xth
t = yt�1, else predict xth

t = ȳth:t�1

(b) set newBin = 0, observe yt and suffer loss (xth
t � ✓t)2

(c) Let ỹ = pad0(yth , ..., yt) and k be the padded length.

(d) Let ↵̂(th : t) = T (Hỹ)

(e) Restart Rule: If 1p
k

Plog2(k)�1
l=0 2l/2

k↵̂(th : t)[l]k1>
�p
k

then

i. set newBin = 1

ii. set th = t + 1

Our policy is the byproduct of following question: How can one lift a batch estimator that is minimax over the TV
class to a minimax online algorithm?

Restarting OGD when applied to our setting with squared error losses reduces to partitioning the duration of game
into fixed size chunks and outputting online averages. As described in Section 3.1, this leads to suboptimal regret.
However, the notion of averaging is still a good idea to keep. If within a time interval, the Total Variation (TV) is
adequately small, then outputting sample averages is reasonable for minimizing the cumulative squared error. Once we
encounter a bump in the variation, a good strategy is to restart the averaging procedure. Thus we need to adaptively
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Baby and W. (2019) “Online Forecasting of Total Variance Bounded Sequences” NeurIPS’19: https://arxiv.org/abs/1906.03364

• By using wavelet soft-thresholding as the  child 
smoother, our policy achieves the minimax rate:

• With nearly linear run-time of

• Adapts to unknown Cn

• Adapts to the smaller Holder / Sobolev classes
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• AdaVAW achieves the minimax rate:

• Adapts to unknown Cn

• Adaptive fast rates: Number of knots J. O(J) error.

• Adapts to the smaller Holder / Sobolev classes

How about higher order TV classes?

Baby and W. (2020) “Adaptive Online Estimation of Piecewise Polynomial Trends” NeurIPS’20: https://arxiv.org/abs/2010.00073

1. Online least square (compete with
the best polynomial fit)

2. Apply Wavelet Shrinkage to the
sequence so far

3. If

• then “restart”
• Otherwise keep going!

Figure 2: A TV 1 bounded comparator sequence ✓1:n can be obtained by sampling the continuous piecewise linear
function on the left at points i/n, i 2 [n]. On the right, we plot the TV 1 distance (which is equal to nkD2

✓1:nk1

by definition) of the generated sequence for various sequence lengths n. As n increases the discrete TV 1 distance
converges to a constant value given by the continous TV 1 distance of the function on left panel.

2 Summary of results
In this section, we summarize the assumptions and main results of the paper.
Assumptions. We start by listing the assumptions made and provide justifications for them.

(A1) The time horizon is known to be n.

(A2) The parameter �2 of subgaussian noise in the observations is a known fixed positive constant.

(A3) The ground truth denoted by ✓1:n has its kth order total variation bounded by some positive Cn, i.e., we consider
ground truth sequences that belongs to the class

TVk(Cn) := {✓1:n 2 Rn : nk
kDk+1

✓1:nk1 Cn}

We refer to nk
kDk+1

✓1:nk1 as TV k distance of the sequence ✓1:n. To avoid trivial cases, we assume Cn = ⌦(1).

(A4) The TV order k is a known fixed positive constant.

(A5) k✓1:nk1 B for a known fixed positive constant B.

Though we require the time horizon to be known in advance in assumption (A1), this can be easily lifted using
standard doubling trick arguments. The knowledge of time horizon helps us to present the policy in a most transparent
way. If standard deviation of sub-gaussian noise is unknown, contrary to assumption (A2), then it can be robustly
estimated by a Median Absolute Deviation estimator using first few observations, see for eg. Johnstone (2017). This is
indeed facilitated by the sparsity of wavelet coefficients of TV k bounded sequences. Assumption (A3) characterizes
the ground truth sequences whose forecasting is the main theme of this paper. The TVk(Cn) class features a rich
family of sequences that can potentially exhibit spatially non-homogeneous smoothness. For example it can capture
sequences that are piecewise polynomials of degree at most k. This poses a challenge to design forecasters that are
locally adaptive and can efficiently detect and make predictions under the presence of the non-homogeneous trends.
Though knowledge of the TV order k is required in assumption (A4), most of the practical interest is often limited
to the lower orders k = 0, 1, 2, 3, see for eg. (Kim et al., 2009; Tibshirani, 2014) and we present (in Appendix D) a
meta-policy based on exponential weighted averages (Cesa-Bianchi and Lugosi, 2006) to adapt to these lower orders.
Finally assumption (A5) is standard in the online learning literature.
Our contributions. We summarize our main results below.

• When the revealed labels are noisy realizations of sequences that belong to TV k(Cn) we propose a polynomial
time policy called Ada-VAW (Adaptive Vovk Azoury Warmuth forecaster) that achieves the nearly minimax

optimal rate of Õ
✓
n

1
2k+3C

2
2k+3
n

◆
for Rdynamic with high probability. The proposed policy optimally adapts to

the unknown radius Cn.
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Adaptive Vovk-Azoury-Warmuth forecaster (AdaVAW)

1. Obtain a high probability bound of bias variance decomposition type on the total squared error incurred by the
policy within a bin.

2. Bound the variance by optimally bounding the number of bins spawned.

3. Bound the squared bias using the restart criterion.

Step 1 is achieved by using the subgaussian behaviour of revealed labels yt. For step 2, we first connect the wavelet
coefficients of a recentered signal to its TV k distance using ideas from theory of Regression Splines. Then we invoke
the “uniform shrinkage” property of soft thresholding estimator to construct a lowerbound of the TV k distance within a
bin. Such a lowerbound when summed across all bins leads to an upperbound on the number of bins spawned. Finally
for step 3, we use a reduction from the squared bias within a bin to the regret of VAW forecaster and exploit the
restart criterion and adpative minimaxity of soft thresholding estimator (Donoho et al., 1998) that uses a CDJV wavelet
system.

Corollary 4. Consider the setup of Theorem 3. For the problem of forecasting sequences ✓1:n with nk
kDk+1

✓1:nk1

Cn and k✓1:nk1 B, Ada-VAW when run with � = 24 + 8 log(8/�)
log(n) yields a dynamic regret of Õ

⇣
n

1
2k+3 (Cn)

2
2k+3

⌘

with probability atleast 1� �.

Remark 5. (Adaptive Optimality) By combining with trivial regret bound of O(n), we see that dynamic regret of
Ada-VAW matches the lower-bound provided in Proposition 1. Ada-VAW optimally adapts to the variational budget
Cn. Adaptivity to time horizon n can be achieved by the standard doubling trick.

Remark 6. (Extension to higher dimensions) Let the ground truth ✓1:n[t] 2 Rd and let vi = [✓1:n[1][i], . . . ,✓1:n[n][i]],�i =

nk
kDk+1

vik1 for each i 2 [d]. Let
Pd

i=1 �i  Cn. Then by running d instances of Ada-VAW in parallel where

instance i predicts ground truth sequence along co-ordinate i, a regret bound of Õ
✓
d

2k+1
2k+3n

1
2k+3C

2
2k+3
n

◆
can be

achieved.

Remark 7. (Generalization to other losses) Consider the protocol in Figure 1. Instead of squared error losses in step
(5), suppose we use loss functions ft(x) such that argmin ft(x) = ✓1:n[t] and f 0

t(x) is �-Lipschitz. Under this setting,

Ada-VAW yields a dynamic regret of Õ
✓
�n

1
2k+3C

2
2k+3
n

◆
with probability at least 1� �. Concrete examples include

(but not limited to):

1. Huber loss, f (!)
t (x) =

(
0.5(x� ✓[1:n][t])

2
|x� ✓[1:n][t]| !

!(|x� ✓[1:n][t]|�!/2) otherwise
is 1-Lipschitz in gradient.

2. Log-Cosh loss, ft(x) = log(cosh(x� ✓[1:n][t])) is 1-Lipschitz in gradient.

3. ✏-insensitive logistic loss (Dekel et al., 2005), f (✏)
t (x) = log(1 + ex�✓[1:n][t]�✏) + log(1 + e�x+✓[1:n][t]�✏) �

2 log(1 + e�✏) is 1/2-Lipschitz in gradient.

The rationale behind both Remark 6 and Remark 7 is described at the end of Appendix C.2

Proposition 8. There exist an O
�
((k + 1)n)2

�
run-time implementation of Ada-VAW.

The run-time of O(n2) is larger than the O(n log n) run-time of the more specialized algorithm of (Baby and Wang,
2019) for k = 0. This is due to the more complex structure of higher order CDJV wavelets which invalidates their trick
that updates the Haar wavelets in an amortized O(1) time.

5 Extensions
In this section, we discuss the potential applications of the proposed algorithm which broadens its generalizability to
several interesting use cases.
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• W denotes the orthonormal Discrete Wavelet Transform (DWT) matrix obtained from a CDJV wavelet construc-
tion (Cohen et al., 1993) using wavelets of regularity k + 1.

• T (y) denotes the vector obtained by elementwise soft-thresholding of y at level �
p
� log l where l is the length

of input vector.

• xt 2 R(k+1) denotes the vector [1, t� th + k + 1, . . . , (t� th + k + 1)k]T .

• At = I +
Pt

s=th�k xsxs
T

• recenter(y[s : e]) function first computes the Ordinary Least Square (OLS) polynomial fit with features
xs, . . . ,xe. It then outputs the residual vector obtained by subtracting the best polynomial fit from the input
vector y[s : e].

• Let L be the length of a vector u1:t. pack(u) first computes l = blog2 Lc. It then returns the pair
(u1:2l ,ut�2l+1:t). We call elements of this pair as segments of u.

Ada-VAW: inputs - observed y values, TV order k, time horizon n, sub-gaussian parameter �,
range of ground truth B, hyper-parameter � > 24 and � 2 (0, 1]

1. For t = 1 to k � 1, predict 0

2. Initialize th = k

3. For t = k to n:

(a) Predict ŷt = hxt, A
�1
t

Pt�1
s=th�k ysxsi

(b) Observe yt and suffer loss (ŷt � ✓1:n[t])2

(c) Let yr =recenter(y[th � k : t]) and L be its length

(d) Let (y1, y2) = pack(yr)

(e) Let (↵̂1, ↵̂2) = (T (Wy1), T (Wy2))

(f) Restart Rule: If k↵̂1k2+k↵̂2k2> � then

i. set th = t+ 1

The basic idea behind the policy is to adaptively detect intervals that have low TV k distance. If the TV k distance
within an interval is guaranteed to be low enough, then outputting a polynomial fit can suffice to obtain low prediction
errors. Here we use the polynomial fit from VAW (Vovk, 2001) forecaster in step 3(a) to make predictions in such low
TV k intervals. Step 3(e) computes denoised wavelets coefficients. It can be shown that the expression on the LHS of
the inequality in step 3(f) can be used to lower bound

p
L times the TV k distance of the underlying ground truth with

high probability. Informally speaking, this is expected as the wavelet coefficents for a CDJV system with regularity
k are computed using higher order differences of the underlying signal. A restart is triggered when the scaled TV k

lower-bound within a bin exceeds the threshold of �. Thus we use the energy of denoised wavelet coefficients as a
device to detect low TV k intervals. In Appendix E we show that popular padding strategies such as zero padding,
greatly inflate the TV k distance of the recentered sequence for k � 1. This hurts the dynamic regret of our policy. To
obviate the necessity to pad for performing the DWT, we employ a packing strategy as described in the policy.

4.3 Performance Guarantees
Theorem 3. Consider the the feedback model yt = ✓1:n[t] + ✏t t = 1, . . . , n where ✏t are independent �2 subguassian
noise and |✓1:n[t]| B. If � = 24 + 8 log(8/�)

log(n) , then with probability at least 1 � �, Ada-VAW achieves a dynamic

regret of Õ
⇣
n

1
2k+3

�
nk

kDk+1
✓1:nk1

� 2
2k+3

⌘
where Õ hides poly-logarithmic factors of n, 1/� and constants k,�,B

that do not depend on n.

Proof Sketch. Our proof strategy falls through the following steps.
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Pt�1
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greatly inflate the TV k distance of the recentered sequence for k � 1. This hurts the dynamic regret of our policy. To
obviate the necessity to pad for performing the DWT, we employ a packing strategy as described in the policy.
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noise and |✓1:n[t]| B. If � = 24 + 8 log(8/�)

log(n) , then with probability at least 1 � �, Ada-VAW achieves a dynamic

regret of Õ
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1
2k+3

�
nk

kDk+1
✓1:nk1

� 2
2k+3

⌘
where Õ hides poly-logarithmic factors of n, 1/� and constants k,�,B

that do not depend on n.

Proof Sketch. Our proof strategy falls through the following steps.
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Key idea behind these algorithms and
Interesting analogy to online learning

• n*MSE ç==è Dynamic Regret
• Total variation ç==è Path length
• Haar Wavelets ç==è Geometric cover
• Online averaging ç==è Online Gradient Descent

• Key ideas in the algorithm: adaptively determine the length of the
history to use!

15



Are there alternative approaches from online
learning? Can we generalize our approach to
handle a broader family of problems?

• Yes! We can obtain optimal TV denoising / fused lasso using “Strongly
Adaptive Online Learning”.

• And we can get rid of the stochastic assumptions all together!

Baby, Zhao and W. (2021) “An Optimal Reduction of TV-Denoising to Adaptive Online Learning” AISTATS’21:
https://arxiv.org/abs/2101.09438

Baby and W. “Optimal Dynamic Regret in Exp-Concave Online Learning” COLT’21 Best Student Paper
https://arxiv.org/abs/2104.11824
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Dynamic regret minimization in online learningProblem Setup

For each t 2 [n] := {1, . . . , n}, learner predicts x t 2 D ⇢ Rd .
Adversary reveals a loss function ft : Rd ! R

Goal: Learner aims to control its dynamic regret against any sequence
of comparators w1, . . .wn where w t 2 W ✓ D for all t .

Rn(w1, . . . ,wn) :=
nX

t=1

ft(x t)� ft(w t),

Learning is said to be proper when W = D.

Learning is said to be improper when W ⇢ D.
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Dynamic regrets are parametrized by variation
incurred by the comparator sequence

Path Variationals

Dynamic regret expressed in terms of the variation incurred by the
comparator sequence.

Pn(w1, . . . ,wn) =
nX

t=1

kw t � w t�1k2

Cn(w1, . . . ,wn) =
nX

t=1

kw t � w t�1k1

Dheeraj Baby and Yu-Xiang Wang Optimal Dynamic Regret in Exp-Concave Online Learning 10 / 49
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Brief history of dynamic regret problem

19



A Primer of Strongly Adaptive Online Learner
Quick Primer on Strongly Adaptive (SA) Algorithms

Algorithms whose static regret in any local time window is
controlled.
Consider any interval [is, it ] := {is, is + 1, . . . , it} ✓ [n]. An SA
algorithm achieves logarithmic static regret on [is, it ] when the
losses are exp-concave.

Achieved by hedging over a pool of base learners of n ONS
instances where instance t starts working from time t .
Examples of such methods include FLH from Hazan and Seshadhri
(2007) and IFLH from Zhang et al. (2018b).Zhang et al. (2018a)

Dheeraj Baby and Yu-Xiang Wang Optimal Dynamic Regret in Exp-Concave Online Learning 13 / 49
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Optimal dynamic regret for exp-concave losses

21

Main Result

Theorem 1 (exp-concave losses)

Let

R+
n (Cn) := sup

w1,...,wn2D�
Pn

t=2kw t�w t�1k1Cn

nX

t=1

ft(x t)� ft(w t),

By running FLH with learning rate ↵ and base learners as ONS with
decision set D and parameter ⇣ = min

n
1

4G†(2B
p

d+2G/�)
,↵

o
, we attain

R+
n (Cn) = Õ

⇣
d3.5(n1/3C2/3

n _ 1)
⌘

if Cn > 1/n and O(d1.5 log n)

otherwise. Here a _ b := max{a, b} and Õ(·) hides dependence on the
constants B,G,G†,↵ and factors of log n.
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Exp-concave losses: why do they matter?

22

f(x) = (yi � �T
i x)

2
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Definition: A twice differentiable function f is α-exp-concave if and only if
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4.2 Exp-concave functions

For convenience, we return to considering losses of convex functions,
rather than gains of concave functions as in the application for portfo-
lio selection. The two problems are equivalent: we simply replace the
maximization of the concave f(x) = log(r€

t x) with the minimization
of the convex f(x) = ≠ log(r€

t x).
In the previous chapter we have seen that the OGD algorithm with

carefully chosen step sizes can deliver logarithmic regret for strongly
convex functions. However, the loss function for the OCO setting of
portfolio selection, ft(x) = ≠ log(r€

t x), is not strongly convex. Instead,
the Hessian of this function is given by

Ò2ft(x) = rtr
€
t

(r€
t x)2

which is a rank one matrix. Recall that the Hessian of a twice-
di�erentiable strongly convex function is larger than a multiple of iden-
tity matrix and is positive definite and in particular has full rank. Thus,
the loss function above is quite far from being strongly convex.

However, an important observation is that this Hessian is large in
the direction of the gradient. This property is called exp-concavity. We
proceed to define this property rigorously and show that it su�ces to
attain logarithmic regret.

Definition 4.1. A convex function f : Rn ‘æ R is defined to be –-exp-
concave over K ™ Rn if the function g is concave, where g : K ‘æ R is
defined as

g(x) = e≠–f(x)

For the following discussion, recall the notation of §2.1, and in par-
ticular our convention over matrices that A < B if and only if A ≠ B
is positive semidefinite. Exp-concavity implies strong-convexity in the
direction of the gradient. This reduces to the following property:

Lemma 4.1. A twice-di�erentiable function f : Rn ‘æ R is –-exp-
concave at x if and only if

Ò2f(x) < –Òf(x)Òf(x)€.

Online linear regression:

Portfolio optimization:
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Now we can optimally compete with any arbitrary changing sequences of linear predictors / portfolio choices!



Back to TV denoising, but in an adversarial
environment

Squared Loss Game

At time t 2 [n] learner predicts xt 2 D := [�B,B].
Adversary reveals a label yt 2 [�B,B].
Learner suffers loss (yt � xt)2.

Define a non-parametric sequence class as:

T VB(Cn) :=

(
w1:n

�����TV (w1:n) :=
nX

t=2

|wt � wt�1| Cn, |wt | B 8t 2 [n]

)
.

Learner aims to control:

Rn(Cn) :=
nX

t=1

(yt � xt)
2 � inf

w1,...,wn2T VB(Cn)

nX

t=1

(yt � wt)
2

This is an instance of proper learning.
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Dynamic regret of SA learner

24

Squared Loss Regret

Theorem 2 (squared error losses)

Let xt be the prediction at time t of FLH with learning rate ⇣ = 1/(8B2)
and base learners as FTL. Then for any comparator
(w1, . . . ,wn) 2 T VB(Cn)

nX

t=1

(yt � xt)
2 � (yt � wt)

2 = Õ
⇣

n1/3C2/3
n B4/3 _ B2

⌘
,

where the labels obey |yt | B, Õ(·) hides dependence on logarithmic
factors of horizon n and a _ b := max{a, b}.
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A new type of oracle inequality

25

Oracle Inequality

Theorem 2 implies the following oracle inequality

nX

t=1

(yt�xt)
2  min

w1,...,wn

nX

t=1

(yt�wt)
2+Õ

⇣
n1/3TV(w1:n)

2/3B4/3 _ B2
⌘
.

A popular denoiser used in the offline iid setting where
yt = ut +N (0,B2) with u1:n 2 T VB(Cn) is the Fused Lasso
estimator which requires a hyper-parameter �.

x̂1:n = argmin
x1:n

nX

t=1

(yt � xt)
2 + �TV (x1:n)
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Oracle Inequality

Fused Lasso denoiser attains the following oracle inequality:Pn
t=1(ut � x̂t)2  minw1,...,wn

Pn
t=1(ut � wt)2 + ÕP (�TV(w1:n)) ,

(See (Guntuboyina et al., 2017; Ortelli and van de Geer, 2019))

When � ⇣ n1/3/C1/3
n , it implies the optimal statistical estimation

rate of Õ(n1/3C2/3
n )

Our results don’t require any statistical assumptions on yt ,
eliminate the need to choose hyperparameter � and also imply the
same estimation rate achievable by the optimal choice of � for the
iid setting.
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SA learner is reasonably practical even in an offline
setting,matching optimally tuned fused lasso up
to a constant.

26

instances of ALIGATOR in parallel where an instance corre-
sponds to a learning rate in the exponential grid [⌘, 2⌘, . . . ,max{⌘, log2 n}]
which has a size of O

�
log

�
(B2 + �

2) log n
��

. Here ⌘ is
chosen as in Theorem 5 or Remark 8. Then we aggregate
each of these instances by the Exponential Weighted Aver-
ages (EWA) algorithm (Cesa-Bianchi and Lugosi, 2006).
The learning rate of this outer EWA layer is set according
to the theoretical value.By exp-concavity of squared error
losses, this strategy helps to match the performance of
the best ALIGATOR instance. Since the theoretical choice
of learning rate is included in the exponential grid, the
strategy can also guarantee optimal minimax rate. We
emphasize that Hedged ALIGATOR is adaptive to Cn and
requires no hyper-parameter tuning.

ALIGATOR with polynomial regression experts. This
extension is motivated by the problem of identifying trends
in time series. Though in Section 3.1 we use online aver-
aging as experts, in practice one can consider using other
algorithms. For example, if the trends in a time series are
piecewise-linear, then experts based on online averaging
can lead to poor practical performance because the TV
budget Cn of piecewise linear signals can be very large.
To alleviate this, in this extension, we propose to use On-
line Polynomial Regression as experts where a polynomial
of a fixed degree d is fitted to the data with time points as
its exogenous variables. This is similar to the idea adopted
in (Baby and Wang, 2020) where they construct a pol-
icy that performs restarted online polynomial regression
where the restart schedule is adaptively chosen via wavelet
based methods. They show that such a scheme can guar-
antee estimation rates that grow with (a scaled) L1 norm
of higher order differences of the underlying trend which
can be much smaller than its TV budget Cn. This exten-
sion can be viewed as a variant to the scheme in (Baby
and Wang, 2020) where the “hard” restarts are replaced
by “soft restarts” via maintaining distributions over the
sleeping experts.

5 Experimental Results
For empirical evaluation, we consider online and offline
vesrions of the problems separately.

Description of policies. We begin by a description of
each algorithm whose error curve is plotted in the figures.

ALIGATOR (hedged): This is the extension described
in Section 4

ALIGATOR (heuristics): For this hueristics strategy, we
divide the loss of each expert by 2(�2+�
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the number of samples whose running average is compued
by the expert. This loss is proportional to the notion of
(squared) z-score used in hypothesis testing. Intuitively,
lower (squared) z-score corresponds to better experts. The
multiplier 2 in the previous expression is found to provide
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level �= 0.25
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Figure 6: Cumulative squared error rate of various algo-
rithms on offline setting and online setting. ALIGATOR
achieves the optimal Õ(n1/3) rate while performing better
than wavelet based methods. In particular, in the offline set-
ting, it achieves a performance closer to that of dof based
fused lasso while only incurring a cheap Õ(n) run-time
overhead.
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Figure 7: A demo on forecasting COVID cases based on
real world data. We display the two weeks forecasts of
hedged ALIGATOR and Holt ES, starting from the time
points identified by the dotted lines. Both the algorithms
are trained on a 2 month data prior to each dotted line. We
see that hedged ALIGATOR detects changes in trends more
quickly than Holt ES. Further, hedged ALIGATOR attains
a 20% reduction in the average RMSE from that of Holt
ES (see Section 5).

good performnace across all signals we consider.
arrows: This is the the policy presented in (Baby and

Wang, 2019), which runs online averaging with an adaptive
restarting rule based on wavelet denoising results.

wavelets: This is the universal soft thresholding esti-
mator from (Donoho et al., 1998) based on Haar wavelets
which is known to be minimax optimal for estimating BV
functions.

oracle fused lasso: This estimator is obtained by solv-
ing (1) whose hyper-parameter is tuned by assuming access
to an oracle that can compute the mean squared error wrt
actual ground truth. The exact ranges used in the hyper-
parameter grid search is described in Appendix C. Note
that the oracle fused lasso estimator is purely hypothetical
due to absence of such oracles described before in reality
and is ultimately impractical. It is used here to facilitate
meaningful comparisons.

fused lasso (dof): In this experiment, we maintain a
list of � for the fused lasso problem (Eq. (1)). Then
we compute the Stein’s Unbiased Risk estimator for the
expected squared error incurred by each � by estimating
its degree of freedom (dof) (Tibshirani and Taylor, 2012)
and select the � with minimum estimated error.

Experiments on synthetic data. For the ground truth
signal, we use the Doppler function of (Donoho and John-
stone, 1994a) whose waveform is depicted in Fig. 5. The
observed data are generated by adding iid noise to the
ground truth. For offline setting, we have access to all
observations ahead of time. So we run Arrows and both
versions of ALIGATOR two times on the same data, once
in isotonic order (i.e it = t in Fig. 1) and other in reverse
isotonic order and average the predictions to get estimates

of the ground truth. For online setting such a forward-
backward averaging is not performed. This process of
generating the noisy data and computing estimates are
repeated for 5 trials and the average cumulative error is
plotted. As we can see from Fig.6 (a), ALIGATOR versions
attains the Õ(n1/3) rate and incurs much lower error than
wavelet smoothing. Further, performance of hedged and
heuristics versions of ALIGATOR is in the vicinity to that
of the hypothetical fusedlasso estimator while the policies
arrows and wavelets violate this property by a large margin.
Even though the dof based fused lasso comes very close to
the oracle counterpart, we emphasize that this strategy is
not known to provide theoretical guarantees for its rate and
requires heavy computational bottleneck since it requires
to solve the fused lasso (Eq. 1) for many different values
of �.

For the online version of the problem, we consider
the policy Arrows as the benchmark. This policy has been
established to be minimax optimal for online forecasting of
TV bounded sequences in (Baby and Wang, 2019). We see
from Fig.6 (b) that all the policies attains an Õ(n1/3) rate
while ALIGATOR variants enjoy lower cumulative errors.

Experiments on real data. Next we consider the task
of forecasting COVID cases using the extension of Aligator
with polynomial regression experts as in Section 4. The
data are obtained from the CDC website (cdc).

We address a very relevant problem as follows: Given
access to the historical data, forecast the evolution of
COVID cases for the next 2 weeks. We compare the
performance of hedged ALIGATOR and Holt Exponen-
tial Smoothing (Holt ES), on this problem, where the later
is a common algorithm used in Time Series forecasting
to detect underlying trends. For ALIGATOR, we use On-
line Linear Regression as experts where a polynomial of
degree one is fitted to the data with time points as its ex-
ogenous variables. For each time point t in [Apr 20, Sep
27], we train both hedged ALIGATOR and Holt ES on a
training window of past 2 months. Then we calculate a
2 week forecast for both algorithms. For ALIGATOR this
is achieved by linearly extrapolating the predictions of ex-
perts awake at time t and aggregating them. Following
this, we compute the Root Mean Squared Error (RMSE) in
the interval [t, t+ 14) for both algorithms. These RMSE
are then averaged across all t in [Apr 20, Sep 27].

We choose data from the state of Florida, USA, as
an illustrative example. We obtained an average RMSE
of 1330.12 for hedged ALIGATOR and 1671.77 for Holt
ES. Thus hedged ALIGATOR attains a 20% reduction in
forecast error from that of Holt ES. A qualitative compar-
ison of the forecasts is illustrated in Fig. 7. As we can
see, the time series is non-stationary and has a varying
degree of smoothness. ALIGATOR is able to adapt to the
local changes quickly, while Holt ES fails to do so despite
having a more sophisticated training phase. Similar experi-
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Sketch of the proof: offline optimal sequence
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Proof Sketch

Consider the offline convex optimization problem:

min
ũ1, . . . , ũn

1
2

nX

t=1

(yt � ũt)
2

s.t.
n�1X

t=1

|ũt+1 � ũt | Cn

Let u1, . . . , un be the optimal primal variables and let � � 0 be the
optimal dual variable corresponding to the TV constraint.

The sequence u1, . . . , un will be referred as the offline optimal.
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Adaptive partitioning of the sequence into bins
according to the offline optimal comparator

30

Proof Sketch

We construct a partitioning of [n] into M bins as follows
{[1s, 1t ], . . . , [is, it ], . . . , [Ms,Mt ]} satisfying:

Ci :=
Pit�1

j=is |uj+1 � uj | B/
p

ni where ni := it � is + 1, i 2 [M].

Number of bins obeys M = O(n1/3C2/3
n B�2/3 _ 1).
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Regret decomposition into three terms
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Proof Sketch

We employ the following regret decomposition:

Rn(Cn) =
MX

i=1

itX

j=is

(xj � yj)
2 � (yj � ȳi)

2

| {z }
T1,i

+

MX

i=1

itX

j=is

(yj � ȳi)
2 � (yj � ūi)

2

| {z }
T2,i

+

MX

i=1

itX

j=is

(yj � ūi)
2 � (yj � uj)

2

| {z }
T3,i
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Proof Sketch

By Strong Adaptivity T1,i = O(B2 log n).

Assume that uis:it is not isotonic.

By KKT conditions of the offline optimization problem we have

T3,i  niC2
i + 3�Ci

 B2 + 3�Ci ,

where we used the fact Ci  B/
p

ni due to our partitioning scheme.

The term 3�Ci can be even as large as ⇥(n).

Dheeraj Baby and Yu-Xiang Wang Optimal Dynamic Regret in Exp-Concave Online Learning 39 / 49

Proof Sketch

By Strong Adaptivity T1,i = O(B2 log n).

Assume that uis:it is not isotonic.

By KKT conditions of the offline optimization problem we have

T3,i  niC2
i + 3�Ci

 B2 + 3�Ci ,

where we used the fact Ci  B/
p

ni due to our partitioning scheme.

The term 3�Ci can be even as large as ⇥(n).

Dheeraj Baby and Yu-Xiang Wang Optimal Dynamic Regret in Exp-Concave Online Learning 39 / 49

Proof Sketch

By Strong Adaptivity T1,i = O(B2 log n).

Assume that uis:it is not isotonic.

By KKT conditions of the offline optimization problem we have

T3,i  niC2
i + 3�Ci

 B2 + 3�Ci ,

where we used the fact Ci  B/
p

ni due to our partitioning scheme.

The term 3�Ci can be even as large as ⇥(n).

Dheeraj Baby and Yu-Xiang Wang Optimal Dynamic Regret in Exp-Concave Online Learning 39 / 49



Turns out that T2 can be very negative when
we need it to be.
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Proof Sketch

Since ȳi minimises h(x) =
Pit

j=is(yj � x)2, we expect

T2,i =
itX

j=is

(yj � ȳi)
2 � (yj � ūi)

2

 0.

In fact, by the KKT conditions we have T2,i  ��2

ni
when uis:it is not

isotonic.
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Proof Sketch

T1,i + T2,i + T3,i  ��2

ni
+ 3�Ci + Õ(B2)

= �
✓

�p
ni

� 3Ci
p

ni

2

◆2
+

9niC2
i

4
+ Õ(B2)

= Õ(B2),

since Ci  B/
p

ni .

Similarly T1,i + T2,i + T3,i = O(B2) even when the sequence uis:it is
isotonic.
Summing across all O(n1/3C2/3

n B�2/3 _ 1) bins in the partition
yields a regret of Õ

⇣
n1/3C2/3

n B4/3 _ B2
⌘

of Theorem 2.
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is always negative.

Nice cancellation:



Conclusions

• Online locally adaptive nonparametric estimators that make sequential
predictions while achieving the optimal rates for offline estimators.

• New techniques that show “strongly adaptive online learners” achieve an
optimal dynamic regret for strongly convex and exponential concave losses.

• A lot of possibilities and open problems at the intersection of adaptive
nonparametric regression and adaptive online learning.

33



Thank you for your attention!
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