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Nonparametric regression

50+ years of associated literature
[Nadaraya, Watson, 1964]
* Kernels, splines, local polynomials
e Gaussian processes and RKHS
* CART, neural networks

 Also known as smoothing, signal denoising /filtering in signal
processing & control.



Adapting to local smoothness

* Some parts smooth, other parts wiggly.

* Wavelets [Donoho&Johnston,1998], adaptive kernel [Lepski,1999], adaptive splines
[Mammen&Van De Geer,2001]

* a.k.a, multiscale, multi-resolution compression, used in JPEG2000.

* New comer: Trend filtering! [Steidl,2006; Kim et. al. 2009, Tibshirani, 2013; W.,Smola,
Tibshirani, 2014]



Univariate trend filtering

—|ly — BlI5 + AID*HY3
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Constant, k =0 Linear, k =1 Quadratic. k =2
(Fused lasso)

(figure extracted from: Tibshirani (2014))



A BIG Example: merger of two black holes

«10721 Gravitational wave: GW150914
8 , , .

Input: H1-strain
Trend filtering
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A BIG Example: merger of two black holes

%1071 Gravitational wave: GW150914

Trend filtering
—— Smoothing spline
— — General Relativity
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A BIG Example: merger of two black holes

%1071 Gravitational wave: GW150914
Trend filtering

—— Smoothing spline l
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Theory behind trend filtering

(Tibshirani, 2014, Annals of Statistics)

* Observations: ;i = Jo(z:) +e, i=1,...n

e TV-class:

Fr={f:TV(f") < C}

* Error rate: Op(n_(Qk,_'_Q)/(Qk_l_:g))

* Best achievable rate for linear smoothers

Op (TL_ (2k+1)/(2k+2) )



Univariate trend filtering: does it solve the motivating
application?

e L1-trend filtering (Kim et al, 2009)

 Motivation: time series!
e e.g., SnP500, CO2 emission, market demand

1/2000 1/2002 1/2004 1/2006 1/2000 1/2002 1/2004 1/2006

* Two major problems in time series:
* Analysis: making senses of what happened.
* Forecasting: predict the future



This talk: towards online trend filtering

1. Minimax rate for TV classes with an online estimator?
e Stochastic environment + TV class
e Stochastic environment + higher order TV class

2. Can we succeed in adversarial environments?
* A reduction to strongly adaptive online learning
* Universal dynamic regret and oracle inequalities
* Adding covariates: Exponential concave losses and GLMs



“Online Nonparametric forecasting” in
stochastic environments.

Individual sequence ¢, ... 9 cR

* Ateachtimestep ¢(=1.....n
» Prediction g, is made by the forecaster
e yr =0; +e e ~iidsubgauss(0,0%)  is revealed

R(n) = 327, Bl(0: — 0:)°]

More difficult than batch problem where one observes all noisy data points before fitting the data
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Bounded Variation Class

* Bounded variation sequences ¢ — (¢,,...,0,)T € R"

where || DO, = S, |6; — ;1| < C,,

From trend filtering problems, this is the Total Variation class with k=0, d=1.

« Constrain the variation budget
» Features a rich class of sequences



Arrows: Adaptive Restarting Rule for Online
averaging using Wavelet Shrinkage

1.

By using wavelet soft-thresholding as the child
smoother, our policy achieves the minimax rate:

R(n) = O(n'/354/3C2/3 + || DO|12)

Keep predicting online averages

Apply Wavelet Shrinkage to the
sequence so far

With nearly linear run-time of O(n log ’n)

log,(k)—1 ~
It LS 92 - >

ﬁ Adapts to unknown Cn

* then “restart”
* Otherwise keep going!

Adapts to the smaller Holder / Sobolev classes

Baby and W. (2019) “Online Forecasting of Total Variance Bounded Sequences” NeurlPS’19: https://arxiv.org/abs/1906.033643



https://arxiv.org/abs/1906.03364

How about higher order TV classes?

Adaptive Vovk-Azoury-Warmuth forecaster (AdaVAW)

1. Online least square (compete with
the best polynomial fit)

A — —1
Ur = (@1, Ay ' Zizth—k YsLs)

2. Apply Wavelet Shrinkage to the
sequence so far

Let (y1,y2) = pack(y,.)
Let (&1, a2) = (T(Wy1), T(Wys))

3. If ||[aq]|2+]||az]|e> o

* then “restart”
e Otherwise keep going!

TVk(Cn) p— {91% - Rn . TLkHD]H_lHl;nHlS Cn}
HglnHooS B

AdaVAW achieves the minimax rate:

~

0 (n—+ (Cn)2k2+3)

Adapts to unknown Cn

Adaptive fast rates: Number of knots J. O(J) error.

Adapts to the smaller Holder / Sobolev classes

Baby and W. (2020) “Adaptive Online Estimation of Piecewise Polynomial Trends” NeurlPS’20: https://arxiv.org/abs/2010.09073



https://arxiv.org/abs/2010.00073

Key idea behind these algorithms and
nteresting analogy to online learning

* n*MSE €===2 Dynamic Regret

* Total variation €===2 Path length

* Haar Wavelets €===%» Geometric cover

* Online averaging €===» Online Gradient Descent

* Key ideas in the algorithm: adaptively determine the length of the
history to use!



Are there alternative approaches-

‘rom online

learning? Can we generalize our a

oproach to

handle a broader family of problems?

* Yes! We can obtain optimal TV denoising / fused lasso using “Strongly

Adaptive Online Learning”.

* And we can get rid of the stochastic assumptions all together!

Baby, Zhao and W. (2021) “An Optimal Reduction of TV-Denoising to Adaptive Online Learning” AISTATS 21:

https://arxiv.org/abs/2101.09438

Baby and W. “Optimal Dynamic Regret in Exp-Concave Online Learning” COLT’21 Best Student Paper

https://arxiv.org/abs/2104.11824
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Dynamic regret minimization in online learning

@ Foreacht e [n] :={1,...,n}, learner predicts x; € D C RC.
@ Adversary reveals a loss function f; : R — R

Goal: Learner aims to control its dynamic regret against any sequence
of comparators wy,... w, where w; €¢ W C D for all t.

Ro(Wi,...,wp) =) fi(X;) — fi(wy),
t=1



Dynamic regrets are parametrized by variation
incurred by the comparator sequence

n
Pn(wi, ... ,wp) = ZHWI‘ — W12
t=1

n
Cn(W1,...,Wp) = ZHWt — W11
t=1



Brief history of dynamic regret problem

Fislvick Yuan and Lamperski,

Exp-Concave losses

Convex losses

O(V/n(1 + Py,)) O*(vVnP, V1)

Zhang et al. This work

Convex losses Exp-Concave losses

O(v/n(1 + P)) O*(n/3C23 v 1)
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A Primer of Strongly Adaptive Online Learner

@ Algorithms whose static regret in any local time window is
controlled.

@ Consider any interval [is, if] :== {is,is+1,...,it} € [n]. An SA
algorithm achieves logarithmic static regret on [is, i] when the
losses are exp-concave.

@ Achieved by hedging over a pool of base learners of n ONS
instances where instance t starts working from time .

@ Examples of such methods include FLH from Hazan and Seshadhri
(2007) and IFLH from Zhang et al. (2018b).



Optimal dynamic regret for exp-concave losses

Theorem 1 (exp-concave losses)

Let

R,_;_(Cn) = sup Z ft(Xt) — ft(Wt),

Wiq,..., WneD™ f—1
Soiollwi—wi_1]1<Cn

By running FLH with learning rate o and base learners as ONS with

decision set D and parameter ( = min { 4G (2BVa12G) B)’a}’ we afttain

R(C,) =0 (d3-5(n1/3 c2/3 vy 1)) if Cp > 1/n and O(d"5 log n)

otherwise. Here aV b := max{a, b} and O(-) hides dependence on the
constants B, G, G', o and factors of log n.




Exp-concave losses: why do they matter?

Definition: A twice differentiable function f is a-exp-concave if and only if

VZf(x) = aVF(x)Vf(x)T

Online linear regression: f(iU) — (yz — ¢;,Tx)2

. C e T
Portfolio optimization: f(x) = —log(r, x).
Now we can optimally compete with any arbitrary changing sequences of linear predictors / portfolio choices!
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Back to TV denoising, but in an adversarial
environment

@ Attime t € [n] learner predicts x; € D := [-B, B].
@ Adversary reveals a label y; € [-B, B].
@ Learner suffers loss (y; — xt)2.

Define a non-parametric sequence class as:

TVB(Cn) L= {W~|:n

n
TV(Wy.p) =) |wi — wi_|< Cp, [wi|< BVt € [n]} .
t=2
Learner aims to control:

n n

Rn(Cn) := Y (1t — xt)* — inf > (v — w)?

f—1 wq,..., WnETVB(Cn) f—1



Dynamic regret of SA learner

Theorem 2 (squared error losses)

Let x; be the prediction at time t of FLH with learning rate ¢ = 1/(8B?)
and base learners as FTL. Then for any comparator
(wy,...,wn) € TVE(Cp)

n
> =X = (i —w)* =0 (”1 BCPBY3 v 52) :
t—1

where the labels obey |y:|< B, O(-) hides dependence on logarithmic
factors of horizon n and aV b := max{a, b}.




A new type of oracle inequality

@ Theorem 2 implies the following oracle inequality

n n

Z(yz‘—xz‘)2 < min Z(Yt—Wt)2+@ (n1/3TV(W1:n)2/SB4/3 Y, Bz) .

Wq,...,Wn
t=1 t=1

@ Fused Lasso denoiser attains the following oracle inequality:
(See (Guntuboyina et al., 2017; Ortelli and van de Geer, 2019))

@ When \ = n'/3/C}/3, it implies the optimal statistical estimation
rate of O(n'/3C%/?)

@ Our results don’t require any statistical assumptions on y;,
eliminate the need to choose hyperparameter A and also imply the
same estimation rate achievable by the optimal choice of X for the

iid setting.



SA learner is reasonably practical even in an offline

setting, matching optimally tuned fused lasso up

to a constant.

cumulative error
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(a) Offline experiments

26



SA |learner beats Arrows in the online setting

Doppler function with noise level o= 0.25 Doppler function with noise level o= 0.75
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(b) Online experiments



Using SA learner to “online trend removal” for
COVID hospitalization forecasts

Daily COVID cases in Florida
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Sketch of the proof: oftline optimal sequence

Consider the offline convex optimization problem:

. 1< o
. I.mn .5 ;(Yt — Uy)
n—1

S.t. Z|Dt+1 - Dt|§ Cn
t=1

Let uy, ..., u, be the optimal primal variables and let A > 0 be the
optimal dual variable corresponding to the TV constraint.

The sequence uy, ..., u, will be referred as the offline optimal.



Adaptive partitioning of t
according to the offline o

We construct a partitioning of [n] into

ne seguence into bins

otimal comparator

M bins as follows

{[1 Sy 1t]7 AR [i37 it]a RN [Ms, Mt]} SatiSfying:

@ C:= Z,I:Z/: Uji+1 — Uj|< B/y/niwhere n; .= iy — is +1, i € [M].
o Number of bins obeys M = O(n'/3C3/°3B-2/3 v 1).



Regret decomposition into three terms

M It
=) > (% —¥i)? + By Strong Adaptivity Ty ; = O(B? log n).
=1 _[ Is
T,
M It
NSRS IVRIIS
i=1 / Is
=g g By KKT conditions
M . ) Tz < niC? + 3\C;
Z: > =T = (3 — ) < B? +3AC;
iI=1 j=lis




Turns out that T2 can be very negative when
we need it to be.

I

Toi= Y (% —V)? = —U) s always negative.

J=ls
2 . . .
Toi < —% when u,.;, is not isotonic.

A2 .
Nice cancellation: 71+ T2+ T3; < T + 3ACj + O(Bz)

i
_ A B SC/\/ﬁ/ 2 n 9/7,'C,-2
—\n 2 4
= O(B?),

+ O(B?)

@ Similarly Ty ; + Tp; + T3, = O(B?) even when the sequence v, is
isotonic.

@ Summing across all O(n'/3C3/*B=2/3 v 1) bins in the partition
yields a regret of O (n1 /3023413 32) of Theorem 2.



Conclusions

* Online locally adaptive nonparametric estimators that make sequential
predictions while achieving the optimal rates for offline estimators.

* New techniques that show “strongly adaptive online learners” achieve an
optimal dynamic regret for strongly convex and exponential concave losses.

* A lot of possibilities and open problems at the intersection of adaptive
nonparametric regression and adaptive online learning.



Thank you for your attention!
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