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Figure 1: Our extraction attack. Given query access to a
neural network language model, we extract an individual per-
son’s name, email address, phone number, fax number, and
physical address. The example in this figure shows informa-
tion that is all accurate so we redact it to protect privacy.

(Carlini et al., 2020)



Differential Privacy provably
addresses these challenges.

 GDPR / CCPA, Risk of identifying users, extracting
their data

* Differential privacy (DMNS 2006) is a formal

definition of privacy with many good properties.
*legal compliance of DP is still being debated

e The two worlds with or without “Alice” are
indistinguishable.
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Differential privacy is transforming
into a practical technology!
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Key challenges from the 2018
“DP-Deployed” Meeting...

Utility loss: Utility remains the primary issue for small to medium-sized data, or high capacity models.
Privacy accounting: There is no standard in selecting, reporting, interpreting privacy parameter €. It is hard to

precisely quantify the actual privacy loss due to the slacks in the mathematical analysis.
Scalability issue: The design and analysis of DP mechanisms is delicate and error-prone even for experts —

there will never be enough PhDs with DP training to meet the growing demand.
Implementation: There are few high-quality codes for DP, with the exception of PINQ (McSherry, 2009),

Ektelo(Zhang et al., 2018) and tf.privacy (Google et al., 2018), each serving a particular niche.

The meeting calls for:

* DP algorithms that are not just “rate-optimal”, but also simple / practical.

* DP tools with exactly optimal privacy accounting that allows flexible design
of complex algorithms using basic building blocks.

“Constant matters in differential privacy!”



My group’s research

. &
enables more practical DP_~/

Yuging Zhu

Challenges in Practicing DP

Lack of utility on
small/medium data

Mathematical overhead
of advanced DP
mechanisms

Shortage of experts vs.
Growing demand

Rachel Redberg

Main research goal: Less privacy loss, more utility!
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autodp: the “autograd” for differential privacy
Enable state-of-the-art DP computation for non-experts

This talk is primarily about the following paper:
Zhu, Dong and W. (2021) Optimal Accounting of Differential Privacy via

Characteristic Function.



Outline of the talk

* Mechanism-specific privacy accounting
* Application to Differentially Private Deep Learning

 Limitation of RDP and existing theory of PLD

* Main results:
* Dominating pairs
* Composition and amplification by sampling
e Characteristic function representation

e Autodp -- a flexible tool for privacy accounting



Composition theorem of DP

Composed mechanism Individual mechanisms

(M, My, ..., My)(z) = (My(z), My(2),. .., My(z))

* Classical Composition Theorem
* Individual mechanisms satisfy DP with parameters

(617 51)7 (627 52)7 RIS (€k7 51{)
* Then composed mechanisms satisfy (€4, k0 + 5')-DP

with Eg:\/len(l/él).e—l-k-e.(eG_l)

Why is this not good enough?




Mechanism-specific analysis of DP
mechanisms and their composition

Composed mechanism Individual mechanisms

(M, My, ..., My)(z) = (My(z), My(2),. .., My(z))

* Instead of composing DP guarantees, why not
composing specific mechanisms?
* We can describe each mechanism by a function.

Functional view Pros Cons
Renyi DP [Mironov, 2017| D, (P||Q) < e(ar),Va > 1 Natural composition lossy conversion to (e, d)-DP.
Privacy profile [Balle and Wang, 2018| Eq[(g —e9)4] <6(ef),Ye >0 Interpretable. messy composition.
f-DP[Dong et al., 2021] Trade-off function f Interpretable, CLT messy composition.
PLD [Sommer et al., 2019, Koskela et al., 2020] | Probability density of log(p/q) | Natural composition via FFT | Limited applicability.

Table 1: Modern functional views of DP guarantees and their pros and cons.

* This is the key idea underlying modern DP accounting.




Example: Differentially Private
Machine Learning

OOQO
0000 -
(2] ¢ Lolle

Differentially Private
Recommendation Engine

=\
St — = 5
3 l/ e : b
2 N AL NS SL S NS
Q 9 | . :..._:-_,—::;’. \",:_v_».“: )\;_-‘-’
) OSSR
2 RIS
a JHER NN
we M, (&
' -

i

“If your recommendation engine is private, then an
adversary can’t infer whether a particular user was present”

10



Example: Deep Learning with
Differential Privacy and NoisySGD

1
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Given a sequence of DP-mechanisms, what is the privacy loss over composition?

- Classical (advanced) composition: Composing (g, §)-DP k times, return results from
the optimal advanced composition.

- Moments accountant: Compose “Subsampled-Gaussian” mechanism k times,
compute (g, 8) in the end.

Deep learning with differential privacy

M Abadi, A Chu, | Goodfellow, HB McMahan... - Proceedings of the ..., 2016 - dl.acm.org
Machine learning technigues based on neural networks are achieving remarkable results in
a wide variety of domains. Often, the training of models requires large, representative ...

v Y9 Cited by 2293 Related articles Import into BibTeX




The practical gains from moments
accountant are sign

Approximate DP’s €

Overall (€, d)-DP over composition.
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(a) Subsampled Gaussian with 0 = 0.5

Figures from W., Balle, Kasiviswanathan (2018) “Subsampled Rényi
Differential Privacy and Analytical Moments Accountant”



The dream of a general-purposed
DP accounting tool

Gaussian Mech.
Sub led Laplace Mech. i — —
ubsampled Lap iace ec | Prwacy — € = ?’ O =1e-8
Propose-Test-Release Accountant

* Flexible mix & match of the DP building blocks
e Constant-tight mechanism-specific composition



Outline of the talk

 Limitation of RDP and existing theory of PLD

* Main results:
* Dominating pairs
* Composition and amplification by sampling
e Characteristic function representation

e Autodp -- a flexible tool for privacy accounting



Why aren’t we happy with RDP /
moments accountant?

RDP of Gaussian Mech.
RDP of Subsampled Laplace Mech.

Analytical

—} —_ ? —_ -
Moments €=7,06=1e-8

RDP of Pro ose-Te:st-ReIease
P Accountant

e Limitations of RDP

1. Some mechanisms do not satisfy RDP
e e.g. PTR, posterior sampling (even for linear regression).

2. RDPis alossy representation of a mechanism



The Conversion from RDP to (g,0)-
DP is lossy
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The promising idea of Privacy Loss
Distribution (or PLD) (Sommer et al.;
Koskela et al)

PLD of Gaussian Mech.
PLD of Subsampled Laplace Mech. Fourier — =7 §=1e-8
. . )
PLD of Propose-Test-Release : Accountant

* From classical DP theory, the privacy loss RV plays a

central role.
> Lp g :=log 22 where o ~ P.

qggg where P=M(D), Q=M(D’)
> Lgp = log 25, where o ~ Q.

* If we keep track of the PLD, then it is tight!



Trouble with the PLD formalism

Challenge: To use PLD, the original authors “require the privacy analyst
interested in applying our results (PLD formalism) to provide worst-case
distributions.”[Sommer et al., 2019]

e Trouble 1: The PLD formalism is defined for each pair of the

neighboring datasets.
o How to find the worst-case datasets?
o Do they even necessarily exist?

e Trouble 2: Unclear what PLD to use when the mechanism of

interest is “amplified” or “composed”.
o if we know the worst-case distribution for each mechanism, the
composition of the individual PLDs may not correspond to the worst-
case PLD of the composed mechanism.



Outline of the talk

* Main results:
* Dominating pairs
* Composition and amplification by sampling
e Characteristic function representation

e Autodp -- a flexible tool for privacy accounting



Recall: Equivalent definitions of
DP via Hockey-Stick Divergences

@ Recall: hockey-stick divergence (or privacy profile) is defined as

H,(P||Q) = /[p —agly,Va >0

o Known: M is (g,6)-DP iff

sup He(M(D)||M(D")) <46
D~D’

There might not be a worst-case pair of datasets!



Wetst-ecase-datasets—Dominating pairs
and tight dominating pairs

Definition 7 (Dominating pair of distributions). We say that (P,Q) is a dominating pair of
distributions for M (under neighboring relation ~) if for all oo > 0?

sup Ho(M(D)||M(D')) < Ho(P[Q). (1)

D~D’

o Tight dominating pair if “=” for all «

Proposition: A tight dominating pair exists for any mechanism.

Questions: How do we find them for each M? How do they work
under composition / amplification?




Constructing a Dominating Pair from a
Privacy Profile upper bound

1. Project H to the feasible space of privacy profiles

H = {H:R>0—>]R{

H 1is convex, decreasing,
HO)=1and Hxz) > (1—2), |

2. Take the Fenchel conjugate of H

P has CDF 1+ H*(z — 1) in |0,1)
() = Uniform(|0, 1])

- The projection may improve the upper bound actually!
- No matter the output space of M, P,Q are univariate on [0,1].



Dominating pairs compose adaptively

Theorem (Adaptive Composition):

If (P,Q) dominates M and (P',Q’) dominates M’>,
then (P x P',Q x Q") dominates the composed mecha-
nism (M, M").

(*M can depend on the output of M.)



Ampllflcatlon by Samplmg
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A sensible conjecture:

(P,Q)-dominates M => ((1-7)Q +7P,Q) dominates M o Sample,

Many published results / empirical work using PLD are implicitly relying on this conjecture.



Amplification by Sampling

A sensi

(P,Q)-domina M o Sample,,

Poisson Subsample with o= 1.0,y =05
. WIL= 1O + 1.0 False not just for Gaussian, but for any other
A —— mechanisms too, under
- Poisson-sampling + Add/Remove

- Random subset sampling + Replace One

If (P,Q) is a dominating pair of M under “Add/remove” Relation, then

Ho((1 =7)Q +7P,Q)  fora>1;
Hy(P,(1—7v)P+~Q) for0<a<l.

CS-/\/lOSPoisson(Oé) S {




Our solution: Handling Add-Neighbor
and Remove-Neighbor Separately!

Theorem 11. Let M be a randomized algorithm.

(1) If (P,Q) dominates M for add neighbors then (P, (1 —~)P 4+ vQ) dominates M o Spoisson
for add neighbors and ((1 —v)Q + P, Q) dominates M o Speisson for removal neighbors.

(2) If (P, Q) dominates M for replacing neighbors, then (P, (1 —~)P+~Q) dominates M o Ssubset
for add neighbors and ((1 — )P + ~Q, P) dominates M o Ssubset for removal neighbors.

o For k-fold composition of the sampled algorithm, just

do
maX{Hee (Pf"Qlf)a Hee (PQICHQIQC))}



Checkpoint: Broader applicability of PLD

o Which pair of distributions to use for PLD to obtain
valid DP bounds?

o Our answers: Dominating pairs!

e How to find dominating pairs?
o Case by case. But one can convert from existing analysis

o Composition and Subsampling
o Useful for constructing complex mechanisms from basic
building blocks



Outline of the talk

* Main results:

e Characteristic function representation

* Autodp -- a flexible tool for privacy accounting



How to represent PLD of a dominating
nair and compose efficiently?

o Existing approach: Fourier Accountant

1. Truncate and discretize the density of PLRV
2. FFT to convert it to a Fourier domain representation
3.  Compose in the Fourier domain. (Pointwise multiplication)

2. Inverse FFT back to the original space after composition

(Sommer et al. 2019; Koskela et al, 2020; 2021; Gopi et al, 2020)



Analytical Fourier accountant

Represent two characteristic functions of the dominating PLRV

ba(a) : = Eple /D], 6, (a) = BqleioH0/7)

m—p  E=7,0=1e-8

¢-function of GM
¢-function of Laplace Mech.

Analytical

Fourier ey 1YPE | €r701 = 0.05,

¢-function of Rand. Resp. Accountant Type Il error =?

* Natural Composition like RDP: simply add up the (complex)
log of ¢p-functions

 Tight (€, 6)-DP Conversion: via Levy’s formula

* Interpretable tradeoff function: via duality.

30



Examples of ¢-function for
common mechanisms

Mechanism Dominating Pair

¢ function

Randomized Response P:Prpl0] =p;Q: Prg[l] =p

Laplace Mechanism  |P: p(z) = ie“"ﬂ/)‘; Q:q(x)= %e"x_lw‘

P:N(1,0%);Q: N(0,07)

Gaussian Mechanism

N A T—
Oa() = (@) = pe™ T 4 (1= p)et
—ai—1 i —1

)
¢M(Oé):¢l/\4(04):% 6%4—@ B +2a%+1(€‘;1_60¢;)>
1 2

pm(e) = ¢y (o) = ezo2 @ 1)

e Others that we know:

* PureDP mechanisms are dominated by randomized response
* ApproxDP mechanisms are dominated by leaky randomized

response.

* Exponential mechanism is dominated by two logistic distributions.

e andsoon ..

* Research: expanding the list



Connection between ¢-function
and other representations

€(a)-Renyi DP
D, (M(D)|| M(D")) < e()
forall D = D'

Lossy
conversion

(¢, 8)-DP
Hee(M(D)|| M(D")) < 8(€)
for all D = D’

Moments >

Post’s inversion formula

generating function

(Renyi Divergence)

Two-sided Laplace transform

AN Takle_ . Fourier
real inpu
Take transform
complex input
) ) = INVerse Fourier
One-sided Post’s “Characteristic transform
Laplace inversion | ayy’s . .
transform a—— forn};ula function”¢(t) w LEVY+FoUFiET
- inverse
Fourier Fourier
transform integral
v
HS-Divergence >
(Privacy-profile / Fenchel duality
CDF of PLD) €

When a dominating pair (P, Q) is available.

Density of privacy

loss RV (PLD)

Integral +
Fourier
inverse

Fenchel +
derivative

4

“Trade-off function”

(f-DP)

Legend

Representation
ft. RDP-like
“Natural Composition

Computable

No numerical
tools available

32



't improves over RDP on the basic
composition of building blocks.
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For sampled Gaussian, AFA (with
guadrature methods) works like a charm.

1.8+ —— BBGHS_RDP o
~— our AFA lower bound P 24
—=—our AFA higher bound ' e
1.6 Double quadrature 2 |
= FA lower bound A -

‘\.

1.4+ = FA higher bound ' i

w 12
1.0
0.8

0.61

200 400 600 800 1000 1200 1400
Number of Compositions k

(c) Exp3 Poisson Subsample

Our approach: error < 1e-14 with just 700 uneven spaced samples.
Koskela et al.: N = 1e5 evenly spaced points to obtain visually indistinguishable error.



Outline of the talk

* Autodp -- a flexible tool for privacy accounting



autodp: a flexible and easy-to-use
package for differential privacy

Mechanism is the base class that describes a

randomized algorithm and its privacy loss.

Calibrator

Calibrator calibrates noise to privacy
budget for an arbitrary ‘mechanism’

1. You bring your mechanism.

Transformers manipulate functions (e.g., RDP) to create new Mechanisms.

(

Mechanism

RDP, f-DP, (¢, §)-DP,

¢-functions
All represented
symbolically.

|}

4 Transformer N
[ compose M e
Compose "
composition
Amplification Group-
by sampling composition
Amplification Argmax
K by Shuffling

Selection J

2. Describe it in autodp as an Mechanism.

Then autodp takes care of

- Numerical computation of the privacy loss.
- Calibrating noise to privacy requirements.

Open source project:
https://github.com/yuxiangw/autodp

pip install autodp



https://github.com/yuxiangw/autodp

Example autodp code: NoisySGD

from autodp.mechanism_zoo import GaussianMechanism
from autodp.transformer_zoo import AmplificationBySampling, Composition

subsample = AmplificationBySampling()

# by default this is using poisson sampling
mech = GaussianMechanism(sigma=5.0)
prob =0.01

# Create subsampled Gaussian mechanism
# Gaussian mechanism qualifies for the tight bound
SubsampledGaussian_mech = subsample(mech,prob,improved bound flag=True)

# Now run this for 10000 iterations
compose = Composition()
noisysgd = compose([SubsampledGaussian_mech],[10000])




stdout:
import matplotlib.pyplot as plt

Mechanism name is " Compose:{PoissonSample:Gaussian: 10000} "
# Query for eps given delta Parameters are: {'PoissonSample:Gaussian:sigma': 5.0,

'PoissonSample:Gaussian:PoissonSample': 0.01}
epsilon(delta) = 0.9141312880070975 , at delta = 1e-06

deltal = 1le-6 .

) epsilon(delta) = 0.6843277003243384 , at delta = 0.0001
epsl = noisysgd.get_approxDP(deltal) Process finished with exit code 0
delta2 = le-4

eps2 = noisysgd.get_approxDP(delta2)
# Get name of the composed object, a structured
description of the mechanism generated automatically 10

Mechanism name is \"', noisysgd.name,"\""')
Parameters are: ',noisysgd.params)
epsilon(delta) =", epsl, ', at delta ="', deltal)

(‘epsilon(delta) =", eps2, ', at delta = ', delta2) 06
# Get hypothesis testing interpretation so we can
directly plot it

(' 0.8
( |
(

Type Il error

0.4 1

fpr_list, fnr_list = noisysgd.plot_fDP()
plt.figure(figsize = (6,6)) 021
plt.plot(fpr_list,fnr_list)
plt.xlabel('Type | error’)
plt.ylabel('Type Il error') : . : : : :

0.0 0.2 0.4 0.6 0.8 1.0
pItShOW() Type | error

0.0




Comparing to other DP open source
library, you should use autodp

* Autodp decouples privacy accounting and DP
mechanism implementation

* A lot of research built into a simple straightforward API

* Autodp is the most flexible and among the tightest
and easiest to use.

* Very suitable for researchers developing new DP
algorithms.

e By default using RDP (mechanism specific analysis) for
everything

* Experimental support for Analytical Fourier Account



Take-home messages

* Compose mechanisms, not their privacy guarantee

* Dominating pairs fixes PLD formalism. If you want
approx-DP in the end, you can retire RDP.

* Represent PLD using characteristic functions.

* Write your next DP paper with autodp!



Thank you for your attention!

Yuqing Zhu, Jinshuo Dong and W. (2021) “Optimal Accounting
of Differential Privacy via Characteristic Function”.
AISTATS’2022: https://arxiv.org/abs/2106.08567

autodp: a flexible and easy-to-use package for differential
privacy https://github.com/yuxiangw/autodp
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https://arxiv.org/abs/2106.08567
https://github.com/yuxiangw/autodp

