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Privacy challenges in the AI Era

(Carlini et al., 2020)
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Differential Privacy provably
addresses these challenges.
• GDPR / CCPA, Risk of identifying users,  extracting 

their data  
• Differential privacy (DMNS 2006) is a formal 

definition of privacy with many good properties.

• The two worlds with or without “Alice” are 
indistinguishable.

(✏, �)�DP
small �

𝑃𝑟𝑜𝑏. 𝑅𝑎𝑡𝑖𝑜 ≤ 𝑒!

*legal compliance of DP is still being debated
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Differential privacy is transforming 
into a practical technology!
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Key challenges from the 2018
“DP-Deployed” Meeting…
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The meeting calls for:
• DP algorithms that are not just “rate-optimal”, but also simple / practical.
• DP tools with exactly optimal privacy accounting that allows flexible design 

of complex algorithms using basic building blocks.

“Constant matters in differential privacy!”



My group’s research 
enables more practical DP

Yuqing Zhu Rachel Redberg

Main research goal: Less privacy loss, more utility!

RT1:
Exact Optimal DP 

Accounting
(Tighten up the 

worst case )

RT2:
Per-Instance &

data-adaptive DP
(More utility via 

“nice” input data)

RT3:
DP with Auxiliary 

Public Info
(Even more utility 
via hybrid models) 

autodp: the “autograd” for differential privacy
Enable state-of-the-art DP computation for non-experts

Collaborative Applications
- Health Data from Wearable Devices

(with Evidation Health)
- Electronic Patient Record Data with 

iCONCUR (with UCSD Health)
- More accurate census data release 

(with John M. Abowd, US Census)
- Synergy with COVID’19 project 

(with Xifeng Yan,  UCSB)

Research ó Education
- Early Research Scholar Program
- Innovation in undergrad /grad course
- NeurIPS/OpenDP tutorial

Challenges in Practicing DP

- Lack of utility on
small/medium data

- Mathematical overhead
of advanced DP
mechanisms

- Shortage of experts vs.
Growing demand

Figure 1: Summary of the proposed research and education activities.

[6] and the f -DP [18], and allowing lossless conversions among them. RT1 also involves modernizing the
privacy analysis of classical DP tools such as the Sparse Vector Technique and ReportNoisyMax.

RT2 goes beyond the worst-case by characterizing and privately-reporting the privacy losses on each input
data. It builds upon the PI’s recent work on per-instance differential privacy (pDP) [68] and extends it in
three major ways: (1) allowing privately publishing pDP summary and joint-privately [41] releasing the pDP
scores to each user; (2) calculating pDP for larger family of mechanisms; (3) designing easy-to-use recipe for
building data-adaptive DP mechanism using pDP, which complements existing tools [59, 19].

RT3 explores further utility boost by exploiting available public information. We challenge the paradigm that
only attackers could exploit side-information by looking into how the availability of a related (but different)
public dataset could help us improving the utility of DP algorithms. Specifically, we study two concrete
settings motivated by applications (1) private histogram release with auxiliary data (of interest to the US
Census [2]); and (2) learning from both private and public data (directly motivated by the iCONCUR system
built by UCSD Health [43]). The latter is known as the “knowledge transfer” model, recently studied by
[60, 9] and by the PI [76]. We propose several new semantics of this hybrid model, and handle the common
cases when the public dataset has a different distribution.

Finally, we plan to build everything into an open source package autodp (under Apache License), so a
layperson, e.g. a software engineer with no advanced degree in differential privacy, could have access
to modern DP tools and implement DP applications by mixing and matching the “building blocks”. A
preliminary version of autodp is already released. One can get it with a simple “pip install autodp”
and then it takes only a few lines of code to use the analytical moments accountant from the PI’s award-
winning recent work [72]. autodp will also play a significant role in the educational activities of this project,
as it allows the undergraduate researchers and collaborators to gain hands-on experience with DP.

PI Qualifications. The PI is a leading researcher in the area of statistical machine learning and has years of
research experience in the algorithms and tools for differential privacy and its applications in statistics and
machine learning [69, 71, 70, 67, 72, 68, 5, 49, 16, 75]. He authored or co-authored more than 40 research
articles in top conferences and journals (H-index = 24) and received multiple recognitions including four
paper awards (or honorable mentions), numerous fellowships (as a student) and research awards (as a faculty).
The PI is the founding co-director the Center for Responsible Machine Learning — UCSB’s flagship effort in
accelerating research and education in strategic areas such as privacy, fairness and other societal challenges
that arise in amidst the AI revolution. The research program that the PI leads is one of the three pillars of the
CS department’s Future-of-Computing Initiative. His unique combination of experience that cuts through
industry and academia, computer science and statistics as well as theory and application has made the PI the
ideal candidate for leading the proposed research in advancing the state-of-the-art in differential privacy and
grounding the theory and algorithms to their motivating applications.

D–2
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This talk is primarily about the following paper:
Zhu, Dong and W. (2021) Optimal Accounting of Differential Privacy via 
Characteristic Function.



Outline of the talk

• Mechanism-specific privacy accounting
• Application to Differentially Private Deep Learning

• Limitation of RDP and existing theory of PLD

• Main results:
• Dominating pairs
• Composition and amplification by sampling
• Characteristic function representation

• Autodp -- a flexible tool for privacy accounting



Composition theorem of DP

• Classical Composition Theorem
• Individual mechanisms satisfy DP with parameters

• Then composed mechanisms satisfy (𝜖!, 𝑘𝛿 + 𝛿")-DP
with

Despite giving an asymptotically correct upper bound for the global privacy parameter, ‘g,
Theorem 1.3 is not exact. We want an exact characterization because, beyond being theoretically
interesting, constant factors in composition theorems can make a substantial di�erence in the prac-
tice of di�erential privacy. Furthermore, Theorem 1.3 only applies to “homogeneous” composition
where each individual algorithm has the same pair of privacy parameters, (‘, ”) . In practice we
often want to analyze the more general case where some individual algorithms in the composition
may o�er more or less privacy than others. That is, given algorithms M1, M2, . . . , Mk, we want
to compute the best achievable privacy parameters for (M1, M2, . . . , Mk). Formally, we want to
compute the function:

OptComp(M1, M2, . . . , Mk, ”g) = inf{‘g Ø 0: (M1, M2, . . . , Mk) is (‘g, ”g)-DP}

It is convenient for us to view ”g as given and then compute the best ‘g, but the dual formulation,
viewing ‘g as given, is equivalent (by binary search). Actually, we want a function that depends
only on the privacy parameters of the individual algorithms:

OptComp((‘1, ”1), (‘2, ”2), . . . , (‘k, ”k), ”g) = sup{OptComp(M1, M2, . . . , Mk, ”g) : Mi is (‘i, ”i)-DP ’i œ [k]}

In other words we want OptComp to give us the minimum possible ‘g that maintains privacy
for every sequence of algorithms with the given privacy parameters (‘i, ”i). A result from Kairouz,
Oh, and Viswanath [KOV15] characterizes OptComp for the homogeneous case.

Theorem 1.4 (Optimal Homogeneous Composition [KOV15]1). For every ‘ Ø 0 and ” œ [0, 1),
OptComp((‘, ”), (‘, ”), . . . , (‘, ”)¸ ˚˙ ˝

k

, ”g) equals the least value of ‘g Ø 0 such that
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Empirically (see Appendix A), this optimal bound provides a 30-40% savings in ‘g compared
to Theorem 1.3 (and a 20% savings compared to an improved asymptotic bound from [KOV15]).
The problem remains to find the optimal composition behavior for the more general heterogeneous
case. Kairouz, Oh, and Viswanath also provide an upper bound for heterogeneous composition that
generalizes the O(


k ln(1/”Õ)) degradation found in Theorem 1.3 for homogeneous composition but

do not comment on how close it is to optimal.

1.1 Our Results
We begin by extending the results of Kairouz, Oh, and Viswanath [KOV15] to the general hetero-
geneous case.

Theorem 1.5 (Optimal Heterogeneous Composition). For all ‘1, . . . , ‘k Ø 0 and ”1, . . . , ”k, ”g œ
[0, 1), OptComp((‘1, ”1), (‘2, ”2), . . . , (‘k, ”k), ”g) equals the least value of ‘g Ø 0 such that
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1
The phrasing of Theorem 1.4 is not exactly how it is presented in [KOV15] (which only refers to ‘g of the form

(k ≠ 2i)‘ for integer i), but this version can be deduced from the original.
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handles the queries. To formalize this, we call two databases D0, D1 with n rows each neighboring

if they are identical on at least n ≠ 1 rows, and define di�erential privacy as follows:

Definition 1.1 (Di�erential Privacy [DMNS06, DKMMN06]). A randomized algorithm M is (‘, ”)-
di�erentially private for ‘, ” Ø 0 if for all pairs of neighboring databases D0 and D1 and all output
sets S ™ Range(M)

Pr[M(D0) œ S] Æ e
‘ Pr[M(D1) œ S] + ”

where the probabilities are over the coin flips of the algorithm M .

In the practice of di�erential privacy, we generally think of ‘ as a small, non-negligible, constant
(e.g. ‘ = .1). We view ” as a “security parameter” that is cryptographically small (e.g. ” =
2≠30). One of the important properties of di�erential privacy is that if we run multiple distinct
di�erentially private algorithms on the same database, the resulting composed algorithm is also
di�erentially private, albeit with some degradation in the privacy parameters (‘, ”). In this paper,
we are interested in quantifying the degradation of privacy under composition. We will denote the
composition of k di�erentially private algorithms M1, M2, . . . , Mk as (M1, M2, . . . , Mk) where

(M1, M2, . . . , Mk)(x) = (M1(x), M2(x), . . . , Mk(x))

A handful of composition theorems already exist in the literature. The first basic result says:

Theorem 1.2 (Basic Composition [DKMMN06]). For every ‘ Ø 0, ” œ [0, 1], and (‘, ”)-di�erentially

private algorithms M1, M2, . . . , Mk, the composition (M1, M2, . . . , Mk) satisfies (k‘, k”)-di�erential

privacy.

This tells us that under composition, the privacy parameters of the individual algorithms “sum
up,” so to speak. We care about understanding composition because in practice we rarely want to
release only a single statistic about a dataset. Releasing many statistics may require running mul-
tiple di�erentially private algorithms on the same database. Composition is also a very useful tool
in algorithm design. Often, new di�erentially private algorithms are created by combining several
simpler algorithms. Composition theorems help us analyze the privacy properties of algorithms
designed in this way.

Theorem 1.2 shows a linear degradation in global privacy as the number of algorithms in the
composition (k) grows and it is of interest to improve on this bound. If we can prove that privacy
degrades more slowly under composition, we can get more utility out of our algorithms under the
same global privacy guarantees. Dwork, Rothblum, and Vadhan gave the following improvement
on the basic summing composition above [DRV10].

Theorem 1.3 (Advanced Composition [DRV10]). For every ‘ > 0, ”, ”
Õ

> 0, k œ N, and (‘, ”)-
di�erentially private algorithms M1, M2, . . . , Mk, the composition (M1, M2, . . . , Mk) satisfies (‘g, k”+
”

Õ)-di�erential privacy for

‘g =


2k ln(1/”Õ) · ‘ + k · ‘ · (e‘ ≠ 1)

Theorem 1.3 shows that privacy under composition degrades by a function of O(


k ln(1/”Õ))
which is an improvement if ”

Õ = 2≠O(k). It can be shown that a degradation function of �(


k ln(1/”))
is necessary even for the simplest di�erentially private algorithms, such as randomized response
[War65].
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Composed mechanism Individual mechanisms
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Why is this not good enough?



Mechanism-specific analysis of DP
mechanisms and their composition

• Instead of composing DP guarantees, why not
composing specific mechanisms?
• We can describe each mechanism by a function.

• This is the key idea underlying modern DP accounting.
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Composed mechanism Individual mechanisms

Functional view Pros Cons
Renyi DP [Mironov, 2017] D↵(PkQ)  ✏(↵), 8↵ � 1 Natural composition lossy conversion to (✏, �)-DP.

Privacy profile [Balle and Wang, 2018] Eq[(
p

q
� e✏)+]  �(e✏), 8✏ � 0 Interpretable. messy composition.

f -DP[Dong et al., 2021] Trade-off function f Interpretable, CLT messy composition.
PLD [Sommer et al., 2019, Koskela et al., 2020] Probability density of log(p/q) Natural composition via FFT Limited applicability.

Table 1: Modern functional views of DP guarantees and their pros and cons.

in general (discussed in Section 3). Privacy profiles and f -DP are unwieldy under composition; and
the method of [Koskela et al., 2020] is limited to mechanisms with univariate output where log(p/q)
admits a density; or those with discrete outputs. Usually, for a new mechanism, we would be lucky
to have any one of these functional descriptions. The need to derive these manually for each new
mechanism is clearly limiting the creativity of researchers and practitioners in DP.

In addition, there are some unresolved foundational issues related to the PLD formalism. As is
repeatedly articulated by the authors, the PLD formalism is defined for each pair of neighboring
datasets separately, thus, strictly speaking, does not imply DP unless we can certify that the pair of
neighboring datasets is the worst-case. This is challenging because such a pair of datasets might not
exist and it is unclear how we can define a partial ordering of two privacy loss distributions.

In this paper, we provide a unified treatment to these functional representations and resolve the
aforementioned subtle issues related to the PLD formalism. Our contributions are summarized
below.

1. We formalize and generalize the notion of “worst-case” pair distributions discussed in [Sommer
et al., 2019] to a “dominating pair” and prove several basic properties of the dominating pairs
including finding such pairs from any privacy-profiles, adaptive composition and amplification by
sampling. These results substantially broaden the applicability of PLD formalism [Sommer et al.,
2019] in deriving worst-case DP guarantees.

2. We propose a lossless representation of the privacy loss RV by its characteristic function (�-
function) and derive optimal conversion formula to (and from) privacy-profile, tradeoff-function
(f -DP) and the distribution function of the privacy loss RV. Many of these conversion rules
correspond naturally to the classical Fourier / Laplace transforms (and their inverses) from the
signal processing literature.

3. We design an Analytical Fourier Accountant (AFA, extending the Fourier accountant of [Koskela
et al., 2020, 2021]) which represents the complex logarithm of the � function symbolically. AFA
can be viewed as an extension of the (analytical) moments-accountant [Abadi et al., 2016, Wang
et al., 2019] to complex ↵, thus allowing straightforward composition. Computing � as a function
of ✏ for (✏, �)-DP boils down to a numerical integral which we use a Gaussian quadrature-based
method to solve efficiently and accurately.

4. Experimentally, we demonstrate that our approach provides substantially tighter privacy guaran-
tees over compositions than RDP on both basic mechanisms and their subsampled counterparts.
Our results essentially match the results from [Dong et al., 2021] and [Koskela et al., 2021]
but neither rely on central-limit-theorem type asymptotic approximation nor require choosing
appropriate discretization a priori as in the FFT-based Fourier Accountant.

Related work: The paper builds upon the existing work on RDP-based privacy accounting [Abadi
et al., 2016, Mironov, 2017, Wang et al., 2019] as well as f -DP [Dong et al., 2021]. Our main theoretical
contribution is to substantially broaden the applicability of the PLD formalism [Sommer et al., 2019]
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Example: Differentially Private 
Machine Learning
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Example: Deep Learning with 
Differential Privacy and NoisySGD

Given a sequence of DP-mechanisms,  what is the privacy loss over composition? 

- Classical (advanced) composition: Composing (ε, δ)-DP k times, return results from
the optimal advanced composition.

- Moments accountant:  Compose “Subsampled-Gaussian” mechanism k times,
compute (ε, δ)  in the end.

Subsampled Rényi Differential Privacy and Analytical Moments
Accountant

Yu-Xiang Wang⇤
UC Santa Barbara
Santa Barbara, CA

yuxiangw@cs.ucsb.edu

Borja Balle
Amazon AI

Cambridge, UK
pigem@amazon.co.uk

Shiva Kasiviswanathan
Amazon AI

Sunnyvale, CA
kasivisw@gmail.com

Abstract

We study the problem of subsampling in differential privacy (DP), a question that is the centerpiece

behind many successful differentially private machine learning algorithms. Specifically, we provide a tight

upper bound on the Rényi Differential Privacy (RDP) (Mironov, 2017) parameters for algorithms that:

(1) subsample the dataset, and then (2) applies a randomized mechanism M to the subsample, in terms

of the RDP parameters of M and the subsampling probability parameter. Our results generalize the

moments accounting technique, developed by Abadi et al. (2016) for the Gaussian mechanism, to any

subsampled RDP mechanism.

1 Introduction

Differential privacy (DP) is a mathematical definition of privacy proposed by Dwork et al. (2006b). Ever since
its introduction, DP has been widely adopted and as of today, it has become the de facto standard of privacy
definition in the academic world with also wide adoption in the industry (Erlingsson et al., 2014; Apple, 2017;
Uber Security, 2017). DP provides provable protection against adversaries with arbitrary side information
and computational power, allows clear quantification of privacy losses, and satisfies graceful composition over
multiple access to the same data. Over the past decade, a large body of work has been developed to design
basic algorithms and tools for achieving differential privacy, understanding the privacy-utility trade-offs in
different data access setups, and on integrating differential privacy with machine learning and statistical
inference. We refer the reader to (Dwork & Roth, 2013) for a more comprehensive overview.

Rényi Differential Privacy (RDP, see Definition 4) (Mironov, 2017) is a recent refinement of differential
privacy (Dwork et al., 2006b). It offers a unified view of the ✏-differential privacy (pure DP), (✏, �)-differential
privacy (approximate DP), and the related notion of Concentrated Differential Privacy (Dwork & Rothblum,
2016; Bun & Steinke, 2016). The RDP point of view on differential privacy is particularly useful when
the dataset is accessed by a sequence of randomized mechanisms, as in this case a moments accountant

technique can be used to effectively keep track of the usual (✏, �) DP parameters across the entire range
{(✏(�), �)|8� 2 [0, 1]} (Abadi et al., 2016).

A prime use case for the moments accountant technique is the NoisySGD algorithm (Song et al., 2013; Bassily
et al., 2014) for differentially private learning, which iteratively executes:

✓t+1  ✓t � ⌘t

 
1

|I|
X

i2I
rfi(✓t) + Zt

!
(1)

where ✓t is the model parameter at tth step, ⌘t is the learning rate, fi is the loss function of data point i,
r is the standard gradient operator, I is an index set of size m that we uniformly randomly drawn from

⇤The research is partially completed while Yu-Xiang was a scientist in Amazon AI, Palo Alto.
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The practical gains from moments 
accountant are significant

(a) Subsampled Gaussian with σ = 5 (a) Subsampled Gaussian with σ = 0.5

Figures from W., Balle, Kasiviswanathan (2018) “Subsampled Rényi
Differential Privacy and Analytical Moments Accountant”



The dream of a general-purposed
DP accounting tool

• Flexible mix & match of the DP building blocks
• Constant-tight mechanism-specific composition

Privacy
Accountant

Gaussian Mech.
Subsampled Laplace Mech.

Propose-Test-Release

Ɛ = ?, δ = 1e-8… …



Outline of the talk

• Mechanism-specific privacy accounting
• Application to Differentially Private Deep Learning

• Limitation of RDP and existing theory of PLD

• Main results:
• Dominating pairs
• Composition and amplification by sampling
• Characteristic function representation

• Autodp -- a flexible tool for privacy accounting



Why aren’t we happy with RDP /
moments accountant?

• Limitations of RDP
1. Some mechanisms do not satisfy RDP

• e.g. PTR, posterior sampling (even for linear regression).

2. RDP is a lossy representation of a mechanism

Analytical
Moments

Accountant

RDP of Gaussian Mech.
RDP of Subsampled Laplace Mech.

RDP of Propose-Test-Release
Ɛ = ?, δ = 1e-8… …



The Conversion from RDP to (𝜀,𝛿)-
DP is lossy

(a) RDP of RR and GM (b) f -DP of RR and GM (c) (✏, �)-DP of RR and GM

Figure 1: The figure illustrates the RDP and f -DP of a Gaussian mechanism with (normalized)
� = 1, and a randomized response mechanism with p =

e
1+e . Pane (a) shows the RDP function of

RR and GM, clearly, RR also satisfies the same RDP of the Gaussian mechanism for all ↵. Pane
(b) in the middle compares the f -DP of the two mechanisms, as well as the f -DP implied by the
optimal conversion from RDP. Pane (c) shows the privacy profile of the two mechanisms, together
with Pane (a), it demonstrates that the optimal f -DP and (✏, �)-DP of GM cannot be achieved by a
conversion from RDP.

moment generating function of LP,Q(o) is called “moments accountant” [Abadi et al., 2016, Wang
et al., 2019].

3 Motivation of our research

In this section, we discuss a number of limitations of Renyi DP and PLD formalism that, in part,
motivated our research.

The limits of RDP. Let us first ask “is the RDP function a lossless description?” In particular,
does it capture all information in the privacy-profile? Because if it is the case, then we could use
RDP for composition, and then find the exact optimal (✏, �)-DP by converting from RDP.

The answer is unfortunately “no”. The reasons are twofolds. First, there are mechanisms with
non-trivial (✏, �)-DP where RDP parameters partially or entirely do not exist. We give two concrete
examples in Appendix A.

The second, and a more troubling issue is that even in the cases when RDP parameters exist
everywhere and hence appears to be characterizing, it does not lead to a tight conversion to (✏, �)-
DP. Gaussian mechanism is such a candidate where its PLD is completely captured by its Renyi
divergences. However, in Figure 1 we demonstrate that we cannot, in general, convert the RDP of
Gaussian mechanism into an (✏, �)-DP that matches the optimal accounting one can achieve through
either the privacy profile or f -DP directly. Specifically, by an example due to [Dong et al., 2021,
Proposition B.7], we know that a randomized response mechanism (RR) satisfies 1-zCDP, thus the
same RDP as that of a Gaussian mechanism (GM) with � = 1. If the RDP conversion is tight, then
it will have to apply to RR too, but that will lead to a contradiction with the tradeoff function of
RR. More explicitly, when we further convert the f -DP in Figure 1 to (✏, �)-DP, this example shows
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The promising idea of Privacy Loss
Distribution (or PLD) (Sommer et al.; 
Koskela et al)

• From classical DP theory, the privacy loss RV plays a
central role.

• If we keep track of the PLD, then it is tight!

Fourier
Accountant

PLD of Gaussian Mech.
PLD of Subsampled Laplace Mech.

PLD of Propose-Test-Release
Ɛ = ?, δ = 1e-8… …

where P=M(D), Q=M(D’)



Trouble with the PLD formalism

● Trouble 1: The PLD formalism is defined for each pair of the 
neighboring datasets.
○ How to find the worst-case datasets?
○ Do they even necessarily exist?

● Trouble 2: Unclear what PLD to use when the mechanism of 
interest is “amplified” or “composed”.
○ if we know the worst-case distribution for each mechanism, the 

composition of the individual PLDs may not correspond to the worst-
case PLD of the composed mechanism. 



Outline of the talk

• Mechanism-specific privacy accounting
• Application to Differentially Private Deep Learning

• Limitation of RDP and existing theory of PLD

• Main results:
• Dominating pairs
• Composition and amplification by sampling
• Characteristic function representation

• Autodp -- a flexible tool for privacy accounting



Recall: Equivalent definitions of 
DP via Hockey-Stick Divergences

There might not be a worst-case pair of datasets!



Worst case datasets  Dominating pairs 
and tight dominating pairs

● Tight dominating pair if “=” for all 𝛼

Proposition: A tight dominating pair exists for any mechanism.

Questions:  How do we find them for each M?  How do they work 
under composition / amplification?

show great promises in computing tight (✏, �)-DP with stable numerical algorithms and provable error
bounds [Koskela et al., 2020, 2021]. However, as we discussed earlier, PLD is specified for each pair of
input datasets separately. To use PLD, the original authors (quoting verbatim) “require the privacy
analyst interested in applying our results (PLD formalism) to provide worst-case distributions.”
[Sommer et al., 2019, Section 2]. In a subsequent work [Meiser and Mohammadi, 2018], a subset of
the authors further derive the worst-case pair of distributions for basic mechanisms such as Gaussian
mechanism and Laplace mechanism [Meiser and Mohammadi, 2018].

While these are valid arguments, the line of work on PLD formalism does not formally define
the worst-case pair of distributions, nor do they provide general recipes for “privacy analysts” to
determine which pair of inputs is the worst-case. The issue is more prominent when we consider
mechanism-specific analysis, because the pairs of datasets that attain the argmax might be different
in different regions of the privacy profile (see an example in Appendix A).

Moreover, in most typical use cases of the privacy accounting tools, the mechanism under consideration
is constructed through the composition of a sequence of simpler mechanisms. Even if for each
mechanism, we know the worst-case pair distributions, the composition of the individual PLDs may
not correspond to the worst-case PLD of the composed mechanism 1. For this reason, it is unclear
how to use PLD for deriving worst-case DP bound under composition except in highly specialized
cases (e.g., Gaussian mechanisms and their compositions).

Summary. To reiterate, RDP is lossy when converting to (✏, �)-DP and the PLD formalism cannot
be used to handle the composition generically due to issues regarding worst-case distributions. The
remainder of the paper will be dedicated to addressing this dilemma.

4 Main results

In this section, we develop a comprehensive solution towards tighter and more flexible mechanism-
specific privacy accounting for (✏, �)-DP with a data-structure that allows natural composition.

4.1 Dominating pair of distributions, composition and subsampling

We first patch the PLD formalism by generalizing the idea of worst-case pair (which may not exist)
to a dominating pair of distributions and prove a number of useful properties.

Definition 7 (Dominating pair of distributions). We say that (P,Q) is a dominating pair of
distributions for M (under neighboring relation ') if for all ↵ � 0

2

sup

D'D0
H↵(M(D)kM(D0

))  H↵(PkQ). (1)

When P,Q is chosen such that (1) takes “=” for all ↵, we say that (P,Q) is a tight dominating
pair of distributions or simply, tightly dominating. If in addition, there exists a neighboring (D̃, D̃0

)

such that (M(D̃),M(D̃0
)) is tightly dominating, and then we say (D̃, D̃0

) is the worst-case pair of
datasets for mechanism M.

Unless otherwise specified, all subsequent results we present hold for any definitions of neighbors
(including asymmetric ones such as add-only and remove-only, which will be useful later).

1This is an issue we will address later, which shows that it is OK even if it does not.
2Note that ↵ � 1 corresponds to the typical range of (✏, �)-DP, but the region for ↵ < 1 is important for composition

and lossless conversions to other representations.
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Constructing a Dominating Pair from a 
Privacy Profile upper bound

1. Project H to the feasible space of privacy profiles

2. Take the Fenchel conjugate of H

- The projection may improve the upper bound actually!  
- No matter the output space of M, P,Q are univariate on [0,1].

A dominating pair of distributions always exists: one can trivially take P and Q that have disjoint
supports. What is somewhat surprising is the following

Proposition 8. Any mechanism has a tightly dominating pair of distributions.

On the other hand, worst-case pair of datasets do not always exist, as is shown by Example 16.

Proposition 8 is the direct consequence of the following result which fully characterizes what
hockey-stick divergences and privacy profiles look like.

Lemma 9. For a given H : R>0 ! R, there exists P,Q such that H(↵) = H↵(PkQ) if and only if
H 2 H where

H :=

(
H : R>0 ! R

�����
H is convex, decreasing,
H(0) = 1 and H(x) > (1� x)+

)
.

Moreover, one can explicitly construct such P and Q: P has CDF 1 + H⇤
(x � 1) in [0, 1) and

Q = Uniform([0, 1]).

The proof, presented in Appendix C, makes use of the Fenchel duality of the privacy profile with
respect to a tradeoff function and a characterization of the tradeoff function due to Dong et al. [2021,
Proposition 2.2].

What makes the specific construction in Lemma 9 (hence Proposition 8) appealing is that even
if the output space is complex, the resulting dominating pair of distributions are of univariate
random variables defined on [0, 1]. This resolves a limitation of Koskela et al. [2020] that requires
the mechanism to have either univariate or discrete outputs.

So far, we have shown the existence of a tightly dominating pairs for all mechanisms (Proposition 8),
and provided a recipe for constructing such a dominating pair for any valid upper bounds of the
privacy profile (Lemma 9 and Corollary 26 in Appendix C). Next we will provide two general primitives
on how to construct dominating pairs for more complex mechanisms created by composition and
privacy amplification by sampling.

Theorem 10 (Adaptive composition of dominating pairs). If (P,Q) dominates M and (P 0, Q0
)

dominates M03, then (P ⇥ P 0, Q⇥Q0
) dominates the composed mechanism (M,M0

).

By induction, this theorem implies that if we construct the PLD using a dominating pair of
distributions for each individual mechanism, then the composed PLD can be used to obtain a valid
worst-case DP of the composed mechanism.

Next we present how we can construct a dominating pair of distributions (and datasets) for
mechanisms under “privacy-amplification by sampling”. This is a powerful primitive that is used
widely in differentially private ERM [Bassily et al., 2014], Bayesian learning [Wang et al., 2015] and
deep learning [Abadi et al., 2016]. We consider the following two schemes.

Poisson Sampling Denoted by S�

Poisson. S�

Poisson takes a dataset of arbitrary size and return a
dataset by including each data point with probability 0  �  1 i.i.d. at random.

Subset Sampling Denoted by S�

Subset. S�

Subset takes a dataset with size n or n� 1 and return a
subset of size m < n uniformly at random. We define � := m/n as a short-hand. 4

3M0 can be adaptively chosen in that it could depend on the output of M, which requires
supo2Range(M) H↵(M0(D, o)kM0(D0

, o))  H↵(P
0kQ0) for any value of o.

4Note that here n,m are public and � := m/n even if (n� 1) is the sample size.
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Dominating pairs compose adaptively

Theorem (Adaptive Composition): 

Manuscript under review by AISTATS 2022

the composition generically due to issues regarding worst-
case distributions. The remainder of the paper will be
dedicated to addressing this dilemma.

4 Main results

In this section, we develop a comprehensive solution to-
wards tighter and more flexible mechanism-specific pri-
vacy accounting for (✏, �)-DP with a data-structure that
allows natural composition.

4.1 Dominating pair of distributions, composition
and subsampling

We first patch the PLD formalism by generalizing the
idea of worst-case pair (which may not exist) to a domi-
nating pair of distributions and prove a number of useful
properties.
Definition 7 (Dominating pair of distributions). We say
that (P,Q) is a dominating pair of distributions for M
(under neighboring relation ') if for all ↵ � 0

2

sup
D'D0

H↵(M(D)kM(D0
))  H↵(PkQ). (1)

When P,Q is chosen such that (1) takes “=” for all ↵,
we say that (P,Q) is a tight dominating pair of distribu-
tions or simply, tightly dominating. If in addition, there
exists a neighboring (D̃, D̃0

) such that (M(D̃),M(D̃0
))

is tightly dominating, and then we say (D̃, D̃0
) is the

worst-case pair of datasets for mechanism M.

Unless otherwise specified, all subsequent results we
present hold for any definitions of neighbors (includ-
ing asymmetric ones such as add-only and remove-only,
which will be useful later).

A dominating pair of distributions always exists: one can
trivially take P and Q that have disjoint supports. What
is somewhat surprising is the following
Proposition 8. Any mechanism has a tightly dominating
pair of distributions.

On the other hand, worst-case pair of datasets do not
always exist, as is shown by Example 16.

Proposition 8 is the direct consequence of the following
result which fully characterizes what hockey-stick diver-
gences and privacy profiles look like.
Lemma 9. For a given H : R>0 ! R, there exists P,Q
such that H(↵) = H↵(PkQ) if and only if H 2 H where

H :=

⇢
H : R>0 ! R

����
H is convex, decreasing,
H(0) = 1 and H(x) > (1� x)+

�
.

2Note that ↵ � 1 corresponds to the typical range of (✏, �)-
DP, but the region for ↵ < 1 is important for composition and
lossless conversions to other representations.

Moreover, one can explicitly construct such P and
Q: P has CDF 1 + H⇤

(x � 1) in [0, 1) and Q =

Uniform([0, 1]).

The proof, presented in Appendix C, makes use of the
Fenchel duality of the privacy profile with respect to
a tradeoff function and a characterization of the trade-
off function due to Dong et al. [2021, Proposition
2.2].

What makes the specific construction in Lemma 9 (hence
Proposition 8) appealing is that even if the output space
is complex, the resulting dominating pair of distributions
are of univariate random variables defined on [0, 1]. This
resolves a limitation of Koskela et al. [2020] that requires
the mechanism to have either univariate or discrete out-
puts.

So far, we have shown the existence of a tightly dominat-
ing pairs for all mechanisms (Proposition 8), and provided
a recipe for constructing such a dominating pair for any
valid upper bounds of the privacy profile (Lemma 9 and
Corollary 26 in Appendix C). Next we will provide two
general primitives on how to construct dominating pairs
for more complex mechanisms created by composition
and privacy amplification by sampling.
Theorem 10 (Adaptive composition of dominating pairs).
If (P,Q) dominates M and (P 0, Q0

) dominates M03,
then (P ⇥ P 0, Q⇥Q0

) dominates the composed mecha-
nism (M,M0

).

By induction, this theorem implies that if we construct
the PLD using a dominating pair of distributions for each
individual mechanism, then the composed PLD can be
used to obtain a valid worst-case DP of the composed
mechanism.

Next we present how we can construct a dominating
pair of distributions (and datasets) for mechanisms under
“privacy-amplification by sampling”. This is a powerful
primitive that is used widely in differentially private ERM
[Bassily et al., 2014], Bayesian learning [Wang et al.,
2015] and deep learning [Abadi et al., 2016]. We consider
the following two schemes.

Poisson Sampling Denoted by S�

Poisson. S�

Poisson takes a
dataset of arbitrary size and return a dataset by including
each data point with probability 0  �  1 i.i.d. at
random.

Subset Sampling Denoted by S�

Subset. S�

Subset takes a
dataset with size n or n� 1 and return a subset of size

3
M

0 can be adaptively chosen in that it could
depend on the output of M, which requires
supo2Range(M) H↵(M

0(D, o)kM0(D0
, o))  H↵(P

0
kQ

0) for
any value of o.

(*M can depend on the output of M.)



Amplification by Sampling

A sensible conjecture:

(P,Q)-dominates M  => dominates

Algorithm M Output

M � Sample : Data ! Output
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Many published results / empirical work using PLD are implicitly relying on this conjecture.



Amplification by Sampling

A sensible conjecture:

(P,Q)-dominates M  => dominates((1� �)Q+ �P,Q)
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False

False not just for Gaussian, but for any other 
mechanisms too, under
- Poisson-sampling + Add/Remove
- Random subset sampling + Replace One  

(a) HS divergence

Figure 4: We consider Poisson subsample Gaussian mechanism with � = 1.0 and � = 0.5. The red
line denotes the pointwise maximum over two HS curves. Figure shows that H↵((1� �)Q+ �P,Q)

dominates the region ↵ � 1 and H↵(P, (1� �)P + �Q) dominates the region ↵ < 1.

It turns out that while we can construct these dominating pairs of M � Sample� explicitly based on
the dominating pair (P,Q) of M, but the expression is not simple. We present these results in this
section.

To avoid any confusion, for all practical purposes, the result in Theorem 11 suffices because we can
always compose “Add” or “Remove” separately and only take the pointwise maximum in the end,
while only incurring twice as much computation, but the results in this section are interesting from
a purely scientific perspective and they are included for the completeness in our understanding of
the problem.

Proposition 30. If (P,Q) is a dominating pair of M under “Add/remove” Relation, then

�M�SPoisson(↵) 
(
H↵((1� �)Q+ �P,Q) for ↵ � 1;

H↵(P, (1� �)P + �Q) for 0 < ↵ < 1.

under the “Add/Remove” relation. Similarly, if (P,Q) is a dominating pair of M under “Replace”
relation for dataset of size �n, then

�M�SSubset(↵) 
(
H↵((1� �)Q+ �P,Q) for ↵ � 1;

H↵(P, (1� �)P + �Q) for 0 < ↵ < 1.

under “Replace” relation for dataset of size n.

We plot H↵((1� �)Q+ �P,Q) and H↵(P, (1� �)P + �Q) for �M�SPoisson(↵) in Figure 4(a).

The proof of the above result requires the use of the following general result that establishes the
relationship between pairs that dominate only one half of the range for ↵ and those that dominate
the other half.

Lemma 31 (Properties for “symmetric neighbors”). Let M be a mechanism and ' be a symmetric
neighboring relationships , i.e., D ' D0 , D ' D0. Then
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Our solution:  Handling Add-Neighbor 
and Remove-Neighbor Separately!

● For k-fold composition of the sampled algorithm, just 
do

Somewhat unconventionally, the following theorem not only considers add/remove neighboring
relation but also treat them separately, which turns out to be crucial in retaining a tight dominating
pair with a closed-form expression5. Our choice of choosing ↵ � 0 in Definition 7 ensures that for any
mechanism (P,Q) dominates for add neighbors iff (Q,P ) dominates for removal neighbors.

Theorem 11. Let M be a randomized algorithm.

(1) If (P,Q) dominates M for add neighbors then (P, (1 � �)P + �Q) dominates M � SPoisson
for add neighbors and ((1� �)Q+ �P,Q) dominates M � SPoisson for removal neighbors.

(2) If (P,Q) dominates M for replacing neighbors, then (P, (1��)P +�Q) dominates M�SSubset
for add neighbors and ((1� �)P + �Q,P ) dominates M � SSubset for removal neighbors.

We can obtain the results for the standard "add/remove" for a k-fold composition of subsampled
mechanism by a pointwise maximum of the two:

max{He✏(P
k

1 ||Qk

1), He✏(P
k

2 ||Qk

2))}

where (P1, Q1) is the “remove only” version of dominating pair and (P2, Q2) is the “add only” version
of dominating pair. Existing literature that uses PLD for Poisson-sampled mechanisms while taking
(�P + (1 � �)Q,Q) as an input are essentially providing privacy guarantees only for the “remove
only” neighboring relationship. To the best of our knowledge, this is the first time a dominating
pair of distributions under privacy-amplification by sampling is proven generically with an arbitrary
base-mechanism M under the privacy-profile. The result, together with Theorem 10, allows PLD
formalism to be applied to a broader family of mechanisms as well as their subsampled versions
under adaptive composition.

4.2 Characteristic function representation

Having strengthened the foundation of the PLD formalism with “dominating distribution pairs” and
two of its basic primitives, we can now put away RDP and its lossy (✏, �)-DP conversion, then conduct
mechanism-specific accounting under (✏, �)-DP directly. Existing computational tools however, either
require asymptotic approximation [Dong et al., 2021, Sommer et al., 2019], repeated convolution
[Dong et al., 2021] or an a priori discretization of the output space [Koskela et al., 2021]. This
prompts us to ask:

“Can we compose mechanisms (with known dominating pairs) naturally just like in RDP? ”

To achieve this goal, we propose using the characteristic function of the privacy loss RV.

Definition 12 (characteristic function of the privacy loss RV). Let (P,Q) be a dominating pair of
M, and p, q be the probability density (or mass) function of P,Q. The two characteristic functions
that describes the PLD are

�M(↵) : = EP [e
i↵ log(p/q)

], �0

M(↵) := EQ[e
i↵ log(q/p)

],

where i denotes the imaginary unit satisfying i2 = �1 and ↵ 2 R.

PLDs are probability measures on the real line, and these �-functions are Fourier transforms of these
measures. We provide �-functions for basic mechanisms (see Table 2) and the discrete mechanisms

5See the appendix for a construction of dominating pairs of subsampled mechanisms under “Add/Remove” or
“Replace” neighbors and more detailed discussion on the advantage of treating “Add” and “Remove” separately.
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Checkpoint: Broader applicability of PLD

● Which pair of distributions to use for PLD to obtain 
valid DP bounds?
○ Our answers:  Dominating pairs!

● How to find dominating pairs?
○ Case by case. But one can convert from existing analysis

● Composition and Subsampling
○ Useful for constructing complex mechanisms from basic

building blocks



Outline of the talk

• Mechanism-specific privacy accounting
• Application to Differentially Private Deep Learning

• Limitation of RDP and existing theory of PLD

• Main results:
• Dominating pairs
• Composition and amplification by sampling
• Characteristic function representation

• Autodp -- a flexible tool for privacy accounting



How to represent PLD of a dominating
pair and compose efficiently?

● Existing approach: Fourier Accountant

1. Truncate and discretize the density of PLRV

2. FFT to convert it to a Fourier domain representation

3. Compose in the Fourier domain. (Pointwise multiplication)

4. Inverse FFT back to the original space after composition

(Sommer et al. 2019;  Koskela et al, 2020; 2021; Gopi et al, 2020)



Analytical Fourier accountant

• Natural Composition like RDP:  simply add up the (complex) 
log of φ-functions
• Tight (Ɛ, δ)-DP Conversion: via Levy’s formula
• Interpretable tradeoff function: via duality.

30

Analytical 
Fourier 

Accountant

φ-function of GM
φ-function of Laplace Mech.

φ-function of Rand. Resp.

Ɛ = ?, δ = 1e-8

… … Type I error = 0.05,  
Type II error =?

Represent two characteristic functions of the dominating PLRV

Mechanism Dominating Pair � function
Randomized Response P : PrP [0] = p;Q : PrQ[1] = p �M(↵) = �0

M
(↵) = pe↵i log(

p
1�p ) + (1� p)e↵i log(

1�p
p )

Laplace Mechanism P : p(x) = 1
2�e

�|x|/�
;Q : q(x) = 1

2�e
�|x�1|/� �M(↵) = �0

M
(↵) = 1

2

✓
e

↵i
� + e

�↵i�1
� +

1
2↵i+1(e

↵i
� � e

�↵i�1
� )

◆

Gaussian Mechanism P : N (1,�2
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[Dong et al., 2021] or an apriori discretization of the output space [Koskela et al., 2021]. This
prompts us to ask:

“Can we compose mechanisms (with known dominating pairs) naturally just like in RDP? ”

To achieve this goal, we propose using the characteristic function of the privacy loss RV.

Definition 15 (characteristic function of the privacy loss RV). Let (P,Q) be a dominating pair of
M, and p, q be the probability density (or mass) function of P,Q. The two characteristic functions
that describes the PLD are

�M(↵) : = EP [e
i↵ log(p/q)

], �0

M(↵) := EQ[e
i↵ log(q/p)

],

where i denotes the imaginary unit satisfying i2 = �1 and ↵ 2 R.

PLDs are probability measures on the real line, and these �-functions are Fourier transforms of these
measures. We provide �-functions for basic mechanisms (see Table 2) and the discrete mechanisms
with closed-form expression. For other intricate and continuous mechanisms (e.g., subsample
variants), we provide efficient discretization methods with upper and lower bound Section E.

Advantages over MGF Comparing to the moment generating function used by the RDP, the
characteristic function differs only in that we are taking the expectation of the complex exponential.
At the price of bringing in complex arithmetics, it has several advantages:

1. � function always exists on the whole real line, while the domain of MGF can be as small as
(trivially) a single point.

2. The integrand in � is always bounded (in complex absolute value) by 1. On the other hand,
the integrand in the MGF can grow to infinity exponentially fast, which sometimes results in
numerical issues.

3. Fourier transform can be inverted by applying another Fourier transform (up to constant
factors), while inverse Laplace transform is notoriously difficult Epstein and Schotland [2008].
Consequently, in obtaining the lossless conversion to (", �)-DP, there is a convenient, numerically
stable inversion formula for �, while there is none for MGF.

Moreover, the adaptive composition over multiple heterogeneous mechanisms remains as straightfor-
ward as that of the RDP.

Proposition 16. Let M1 and M2 be two randomized algorithms. We have the �-function of the
composition (M1,M2) with order ↵ 2 R satisfies: �(M1,M2)(↵) = �M1(↵) · �M2(↵)

Lossless conversion rules. The �-function losslessly can be losslessly converted back and forth
with other representation such as the privacy-profile, tradeoff function, moment-generating function
as well as the distribution function of the privacy loss RV. The conversion rule with prominent
interest is the conversion to (✏, �)-DP. Specifically, for finding � as a function of ✏ (i.e., privacy
profile), we invoke the fourth equivalent definition of (✏, �)-DP in Lemma 5, which depends on the
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Examples of φ-function for 
common mechanisms

• Others that we know:
• PureDP mechanisms are dominated by randomized response
• ApproxDP mechanisms are dominated by leaky randomized 

response.
• Exponential mechanism is dominated by two logistic distributions.
• and so on …

• Research: expanding the list 
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Connection between φ-function 
and other representations 
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Figure 2: Summary of the various functional descriptions and their conversion rules.

cumulative distribution function (CDF) of the privacy loss random variables LP,Q and LQ,P . In
Appendix B, we establish that these CDFs can be evaluated through an integration of �-functions
via Levy’s formula. The lossless conversions to other quantities are summarized in Figure 2 and
we provide more details in Section B. Interestingly, when we consider a fixed dominating pair of
distributions, all these quantities, including the MGF when it exists in the neighborhood of 0 (which
implies the existence of Renyi-divergence with ↵ > 0 and a lossless inversion formula). Moreover,
most of the conversion formula correspond to well-known transforms such as the Fourier transform,
Laplace transform and its double-sided variant. Except for those involve RDP and hence Laplace
transform, numerical algorithms for implementing these transforms are often available.

4.3 Analytical Fourier Accountant and numerical algorithms
We now propose our analytical Fourier Accoutant (AFA) in Algorithm 1, which is a combination
of the lossless conversion rules and the analytical composition rule (Proposition 16). Given a
sequence of mechanisms (can be varied) applied to the same dataset, the data structure tracks the
log characteristic function of each mechanism in a symbolic form. When there is a (✏, �) request (e.g.
query ✏ with a fixed �), the accountant first constructs two analytical CDFs (with respect to the
privacy loss RV LP,Q and LQ,P ) using Theorem 20. Then the conversion to (✏, �)-DP is obtained
using Lemma 5.

Algorithm 1 Analytical Fourier Accountant
Input: A sequence of mechanisms for composition M1, ...,MK , � or ✏
1: for i = 1, ...,K do

2: Maintain the symbolic accountant
3: log �(M)(↵) log �(M)(↵) + log �(Mi)(↵)
4: log �0

(M)(↵) log �0

(M)(↵) + log �0

(Mi)
(↵)

5: if query (✏, �)-DP then

6: Obtain the CDF FLP,Q(·) from log �(M)(↵) through Theorem 20.
7: Obtain the CDF FLQ,P (·) from log �0

(M)(↵) through Theorem 20.
8: Return � by Lemma 5. ( (For computing ✏ given �, we use bisection to solve �M(✏) = �.))
9: end if

10: end for

AFA vs FFT. Comparing to the FFT-accountant approach [Koskela et al., 2020, 2021, Koskela
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It improves over RDP on the basic 
composition of building blocks.



For sampled Gaussian, AFA (with 
quadrature methods) works like a charm. 

Our approach:   error < 1e-14 with just 700 uneven spaced samples.
Koskela et al.:  N = 1e5 evenly spaced points to obtain visually indistinguishable error.



Outline of the talk

• Mechanism-specific privacy accounting
• Application to Differentially Private Deep Learning

• Limitation of RDP and existing theory of PLD

• Main results:
• Dominating pairs
• Composition and amplification by sampling
• Characteristic function representation

• Autodp -- a flexible tool for privacy accounting



autodp: a flexible and easy-to-use 
package for differential privacy

Mechanism

RDP, f-DP, 𝜖, 𝛿 -DP, 
φ-functions

All represented 
symbolically.

Calibrator

Transformer
Compose

Amplification 
by sampling
Amplification 
by Shuffling

Parallel-
composition

Group-
composition

Calibrator calibrates noise to privacy 
budget for an arbitrary ‘mechanism’

Argmax 
Selection

Transformers manipulate functions (e.g., RDP) to create new Mechanisms.Mechanism is the base class that describes a 
randomized algorithm and its privacy loss.
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Open source project:
https://github.com/yuxiangw/autodp

pip install autodp

1. You bring your mechanism.

2. Describe it in autodp as an Mechanism.

Then autodp takes care of 
- Numerical computation of the privacy loss.
- Calibrating noise to privacy requirements.

https://github.com/yuxiangw/autodp


Example autodp code: NoisySGD
from autodp.mechanism_zoo import GaussianMechanism
from autodp.transformer_zoo import AmplificationBySampling, Composition

subsample = AmplificationBySampling()
# by default this is using poisson sampling
mech = GaussianMechanism(sigma=5.0)
prob = 0.01

# Create subsampled Gaussian mechanism
# Gaussian mechanism qualifies for the tight bound
SubsampledGaussian_mech = subsample(mech,prob,improved_bound_flag=True)

# Now run this for 10000 iterations
compose = Composition()
noisysgd = compose([SubsampledGaussian_mech],[10000])



import matplotlib.pyplot as plt

# Query for eps given delta

delta1 = 1e-6
eps1 = noisysgd.get_approxDP(delta1)
delta2 = 1e-4
eps2 = noisysgd.get_approxDP(delta2)
# Get name of the composed object, a structured 
description of the mechanism generated automatically

print('Mechanism name is \"', noisysgd.name,'\"')
print('Parameters are: ',noisysgd.params)
print('epsilon(delta) = ', eps1, ', at delta = ', delta1)
print('epsilon(delta) = ', eps2, ', at delta = ', delta2)
# Get hypothesis testing interpretation so we can 
directly plot it

fpr_list, fnr_list = noisysgd.plot_fDP()
plt.figure(figsize = (6,6))
plt.plot(fpr_list,fnr_list)
plt.xlabel('Type I error')
plt.ylabel('Type II error')
plt.show()

stdout:

Mechanism name is " Compose:{PoissonSample:Gaussian: 10000} "
Parameters are:  {'PoissonSample:Gaussian:sigma': 5.0, 
'PoissonSample:Gaussian:PoissonSample': 0.01}
epsilon(delta) =  0.9141312880070975 , at delta =  1e-06
epsilon(delta) =  0.6843277003243384 , at delta =  0.0001
Process finished with exit code 0



Comparing to other DP open source
library, you should use autodp
• Autodp decouples privacy accounting and DP

mechanism implementation
• A lot of research built into a simple straightforward API

• Autodp is the most flexible and among the tightest
and easiest to use.
• Very suitable for researchers developing new DP

algorithms.
• By default using RDP (mechanism specific analysis) for

everything
• Experimental support for Analytical Fourier Account



Take-home messages

• Compose mechanisms, not their privacy guarantee

• Dominating pairs fixes PLD formalism. If you want 
approx-DP in the end, you can retire RDP.

• Represent PLD using characteristic functions.

• Write your next DP paper with autodp!



Thank you for your attention!

Yuqing Zhu, Jinshuo Dong and W. (2021) “Optimal Accounting 
of Differential Privacy via Characteristic Function”. 
AISTATS’2022: https://arxiv.org/abs/2106.08567

autodp: a flexible and easy-to-use package for differential 
privacy  https://github.com/yuxiangw/autodp

https://arxiv.org/abs/2106.08567
https://github.com/yuxiangw/autodp

