Nonparametric Regression meets Online Learning

Wavelets, Local Adaptivity and T^{1/3} Dynamic Regret

Yu-Xiang Wang

Based on joint work with Dheeraj Baby

Outline

• A tour of locally adaptive nonparametric regression

From regression to forecasting

Open problems

Nonparametric regression

50+ years of associated literature

[Nadaraya, Watson, 1964]

- Kernels, splines, local polynomials
- Gaussian processes and RKHS
- CART, neural networks

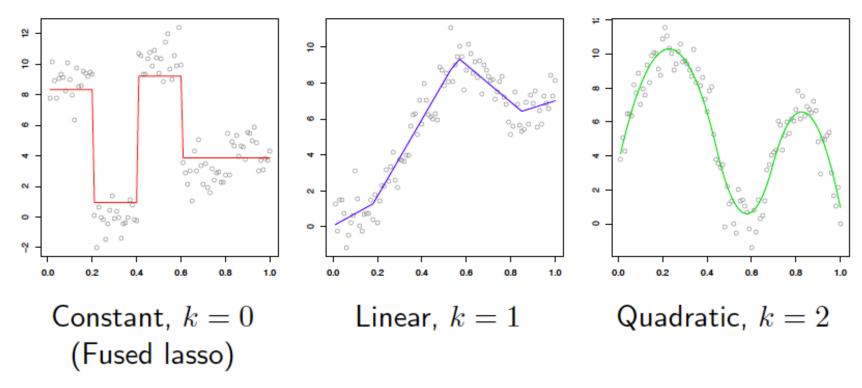
 Also known as smoothing, signal denoising /filtering in signal processing & control.

Adapting to local smoothness

- Some parts smooth, other parts wiggly.
 - Wavelets [Donoho&Johnston,1998], adaptive kernel [Lepski,1999], adaptive splines [Mammen&Van De Geer,2001]
 - a.k.a, multiscale, multi-resolution compression, used in JPEG2000.
 - New comer: Trend filtering! [Steidl,2006; Kim et. al. 2009, Tibshirani, 2013; W.,Smola, Tibshirani, 2014]

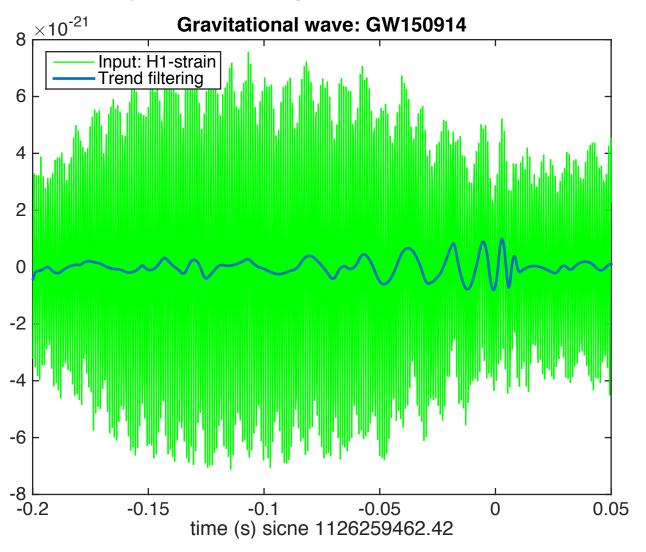
Univariate trend filtering

$$\min_{\beta \in \mathbb{R}^n} \frac{1}{2} \|y - \beta\|_2^2 + \lambda \|D^{(k+1)}\beta\|_1$$

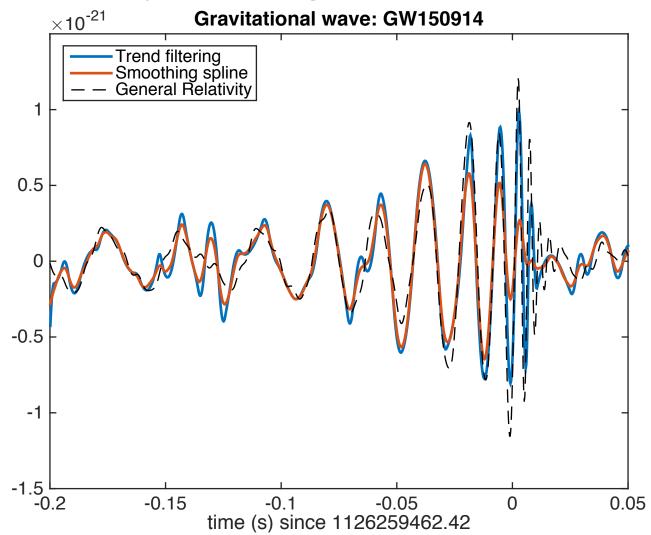


(figure extracted from: Tibshirani (2014))

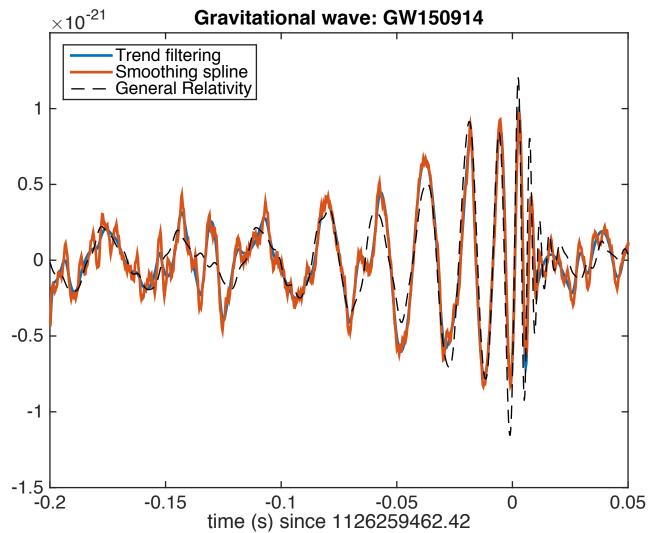
A BIG Example: merger of two black holes



A BIG Example: merger of two black holes



A BIG Example: merger of two black holes



Theory behind trend filtering

(Tibshirani, 2014, Annals of Statistics)

Observations:

$$y_i = f_0(x_i) + \epsilon_i, \quad i = 1, \dots n$$

• TV-class:

$$\mathcal{F}_k = \left\{ f : \text{TV}(f^{(k)}) \le C \right\}$$

• Error rate:

$$O_{\mathbb{P}}(n^{-(2k+2)/(2k+3)})$$

Best achievable rate for linear smoothers

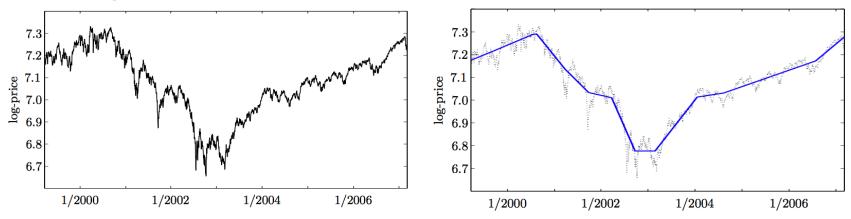
$$O_{\mathbb{P}}(n^{-(2k+1)/(2k+2)})$$

Generalizations of trend filtering

- To multi-dimensional signal observed on a lattices/grid: images/video
 - d>1, k=0 (Sadhanala, W., Tibshirani, NeurIPS 2016)
 - d=2, k>0 (Sadhanala, W., Tibshirani, NeurIPS 2017)
- To signals on a general graphs
 - (W., Sharpnack, Smola, Tibshirani, JMLR 2016)
- Type of results:
 - Minimax rate, minimax linear rate, adaptivity, phase transition phenomena
 - fast algorithms, various applications. Story of another time.

Back to univariate trend filtering: does it solve the motivating application?

- L1-trend filtering (Kim et al, 2009)
 - Motivation: time series!
 - e.g., SnP500, CO2 emission, market demand



- Two major problems in time series:
 - Forensics: making things of what happened.
 - Forecasting: predict the future

This talk: Online Nonparametric Forecasting

```
Individual sequence 	heta_1,\ldots,	heta_n\in\mathbb{R}
```

- At each time step t = 1, ..., n
 - Prediction $\hat{\theta}_t$ is made by the forecaster
 - $y_t = \theta_t + \epsilon_t$, $\epsilon_t \sim iid \, \mathrm{subgauss}(0, \sigma^2)$ is revealed by Nature

Minimize the Total Squared Error (TSE): $R(n) = \sum_{t=1}^{n} E[(\hat{\theta}_t - \theta_t)^2]$

This talk: Online Nonparametric Forecasting

```
Individual sequence \theta_1, \ldots, \theta_n \in \mathbb{R}
```

- At each time step t = 1, ..., n
 - Prediction $\hat{\theta}_t$ is made by the forecaster
 - $y_t = \theta_t + \epsilon_t$, $\epsilon_t \sim iid \, {
 m subgauss}(0,\sigma^2)$ is revealed by Nature

Minimize the Total Squared Error (TSE): $R(n) = \sum_{t=1}^{n} E[(\hat{\theta}_t - \theta_t)^2]$

More difficult than batch problem where one observes all noisy data points before fitting the data

Weaken the adversary

- We aim to build a forecaster that has sub-linear TSE as a function of n against all possible ground truth sequences
- Impossible unless some regularity conditions are applied to the adversary's moves
- Hence need to restrict ourselves to some class of ground truth sequences

Bounded Variation Class

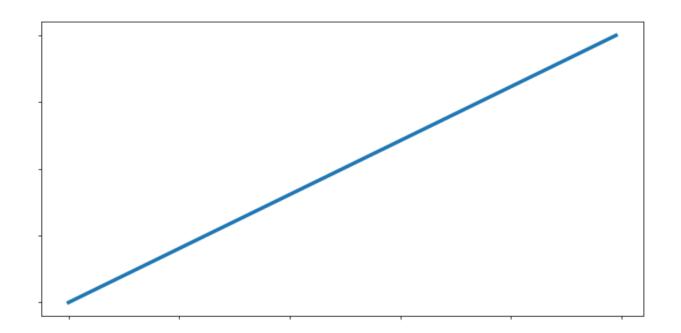
• Bounded variation sequences $\Theta = (\theta_1, \dots, \theta_n)^T \in \mathbb{R}^n$

where
$$||D\Theta||_1 = \sum_{t=2}^{n} |\theta_t - \theta_{t-1}| \le C_n$$

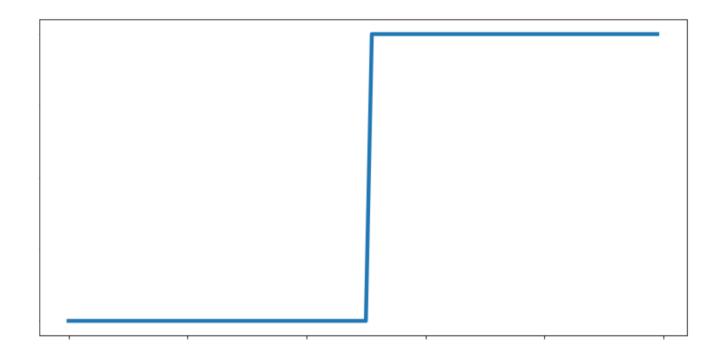
From trend filtering problems, this is the Total Variation class with k=0, d=1.

- Constrain the variation budget
- Features a rich class of sequences

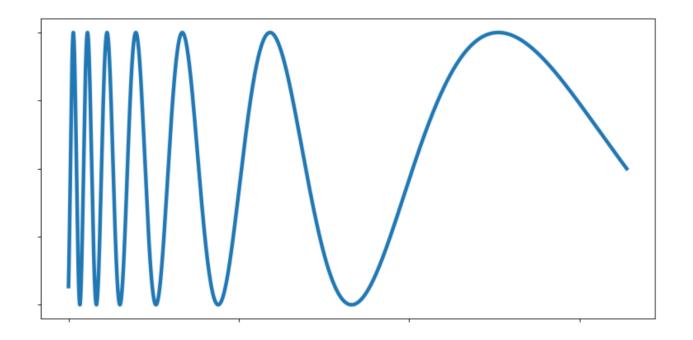
Spatially Homogeneous trends



Spatially Inhomogeneous trends



Spatially Inhomogeneous trends



Minimax TSE

$$\tilde{R}(n) = \min_{algos} \left(\max_{\Theta; ||D\Theta||_1 \le C_n} R(n) \right)$$

•For batch setting:
$$\tilde{R}(n) = \Omega(n^{1/3}\sigma^{4/3}C_n^{2/3})$$
 From theory of non-parametric regression

[6] Donoho et.al

Minimax TSE

$$\tilde{R}(n) = \min_{algos} \left(\max_{\Theta; ||D\Theta||_1 \le C_n} R(n) \right)$$

- •For batch setting: $\tilde{R}(n) = \Omega(n^{1/3}\sigma^{4/3}C_n^{2/3})$
- .It can be shown that for forecasting:

$$\tilde{R}(n) = \Omega(n^{1/3}\sigma^{4/3}C_n^{2/3} + \overline{C_n^2}) \longrightarrow \begin{array}{c} \text{Forecasting is harder than smoothing} \end{array}$$

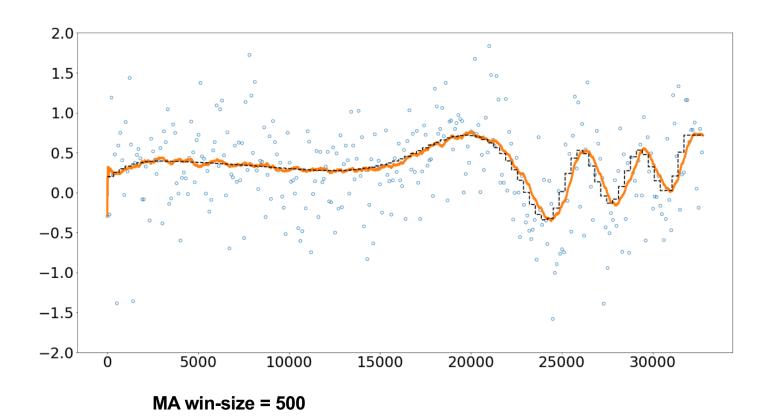
This is a very basic problem, what are existing ways of solving it?

- Classical time-series forecasting
 - AR, MA, ARMA, ARIMA (Box-Jenkins style)
- Modern online learning and dynamic regret
 - Incur an online sequence of square losses.
 - Receive noisy gradients as feedback
 - TSE = Dynamic Regret

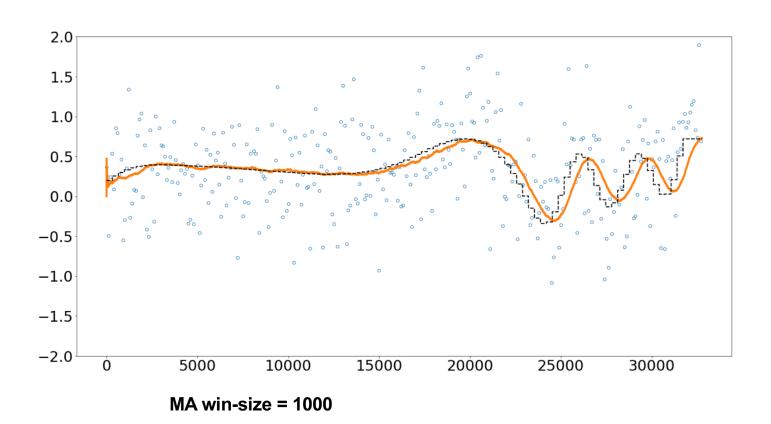
$$\sum_{t=1}^{n} \ell_t(\hat{\theta}_t) - \sum_{t=1}^{n} \min_{\theta_t} \ell_t(\theta_t)$$

- What? Pointwise optimal comparators?
 - Constrain how quickly loss functions can change (Besbes et al, 2013)
 - Alternative view: constrain the comparator sequence (Zinkevich, 2003)

Why Moving Averages won't work?

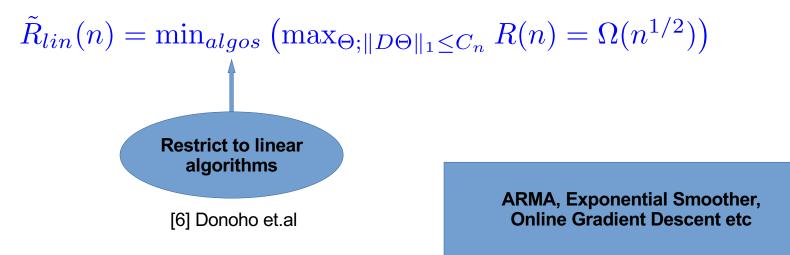


Why Moving Averages won't work?



Linear Forecasters are suboptimal

- MA is a Linear Forecaster: a policy that predicts a fixed linear function of past observations
- It can be shown that:



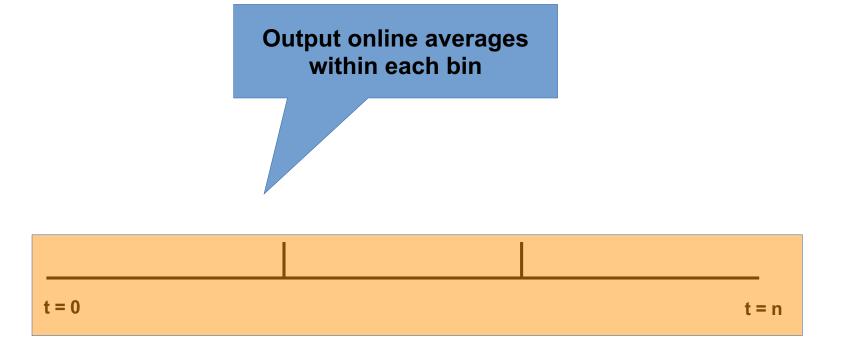
Existing policies are suboptimal

Policy	TSE	Lower bound
Restarting OGD [1,2]	O(n ^{1/2})	$\Omega(n^{1/3})$
AOMD [3]	O(n ^{1/2})	$\Omega(n^{1/3})$

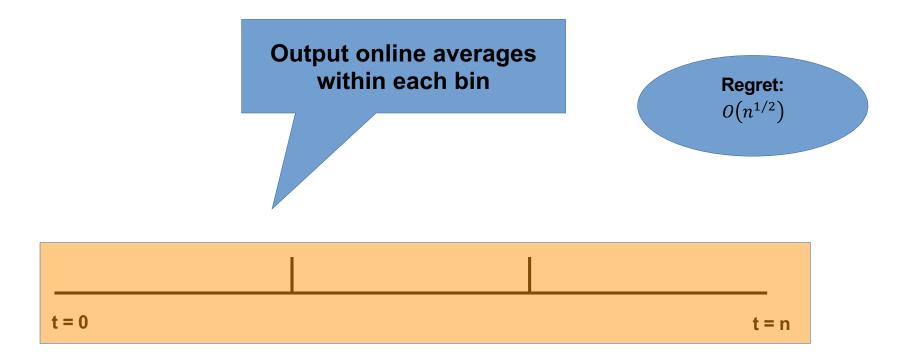
Restarting OGD in our setting



Restarting OGD in our setting



Restarting OGD in our setting



A method to design optimal policy

- Restarting online averages
- Key Idea: Adaptively choose the restarting schedule
- Restart only when enough Total Variation is detected
- Adaptively partition the time horizon into various bins

- A TV lower bound => Bound # of times we restart
- 2. A TV upper bound => Upper bound the error of a fixed baseline comparator

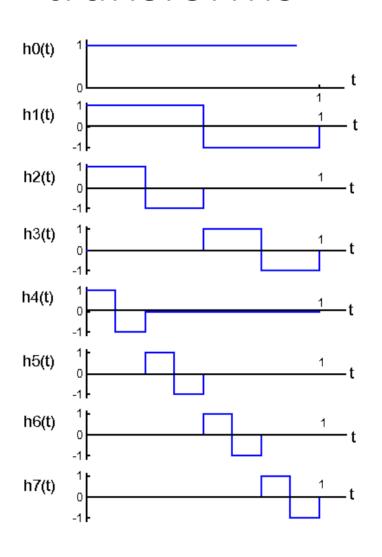
Wavelets, and wavelet smoothing

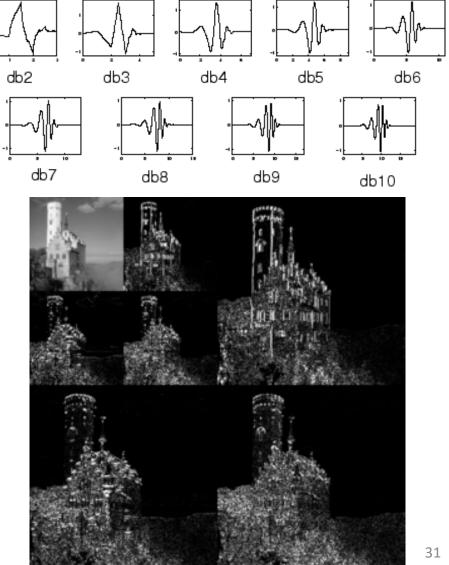
- Classical (Haar, 1909) (Ricker, 1953)
- A lot of developments in 1980s and 1990s
 - e.g., Daubechies, Coifmans et al (1980s)

(Alfréd Haar, 1885 - 1933) PhD student of David Hilbert

- Use in statistics / statistical signal processing
 - Donoho and Johnstone (1998) et al
- Implementation: e.g., JPEG2000, DjVu, Multi-resolution analysis

Examples of wavelets and wavelet transforms





Wavelet smoothing in one slide

- Model: $y = \theta + \text{noise}$
- Wavelet smoothing algorithm
 - 1. Wavelet Transform: $\alpha = Hy$
 - 2. Thresholding: $\hat{\alpha} = \text{Soft-Threshold}_{\lambda}(\alpha)$
 - 3. Reconstruction: $\hat{\theta} = H^{-1}\hat{\alpha}$

Remarkable adaptivity of wavelet smoothing

- Choose $\lambda = \sigma \sqrt{2 \log n}$
 - (or use SUREShrink as an adaptive choice)
- Where are the functions coming from:
 - Holder classes, Sobolev classes, Total Variation classes
 - Besov class(p,q, R)
- Donoho (1995), Donoho & Johnstone (1998):
 - Wavelet smoothing is simultaneously minimax (up to a log n term) for all p, q, R > 0 in the Besov class

ARROWS: Adaptive Restarting Rule in Online averaging with Wavelet Shrinkage

ARROWS: inputs - observed y values, time horizon n, $\delta \in (0, 1]$, total variation bound C_n , a hyper-parameter $\beta > 6$

- 1. Initialize $t_h = 1$, newBin = 1, $y_0 = 0$
- 2. For t = 1 to n:
 - (a) if newBin == 1, predict $x_t^{t_h} = y_{t-1}$, else predict $x_t^{t_h} = \bar{y}_{t_h:t-1}$
 - (b) set newBin = 0, observe y_t and suffer loss $(x_t^{t_h} \theta_t)^2$
 - (c) Let $\hat{y} = pad_0(y_{t_h}, ..., y_t)$ and k be the padded length.
 - (d) Let $\hat{\alpha}(t_h:t) = T(H\hat{y})$
 - (e) Restart Rule: If $\frac{1}{\sqrt{k}} \sum_{l=0}^{\log_2(k)-1} 2^{l/2} \|\hat{\alpha}(t_h:t)[l]\|_1 > n^{-1/3} C_n^{1/3} \sigma^{2/3}$ then
 - i. set newBin = 1
 - ii. set $t_h = t + 1$

Our Main Results

 By using wavelet soft-thresholding as the child smoother, our policy achieves the minimax regret:

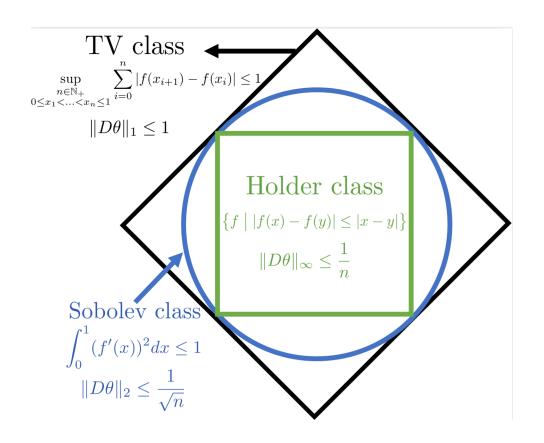
$$\tilde{R}(n) = \tilde{O}(n^{1/3}\sigma^{4/3}C_n^{2/3} + ||D\Theta||_2^2)$$

- With nearly linear run-time of $O(n \log n)$
- The additional factor is why forecasting is harder than smoothing.

Blackbox Recipe to turn smoothers into forecasters

- Two ingradients:
- 1. Smoother that is adaptively minimax and produces estimates as smooth as the original with high probability.
- 2. Online Learner with logarithmic regret
- Any blackboxes that satisfy these oracle properties will work.

Beyond TV bounded sequences



ARROWS calibrated according to radius of a TV class is adaptively minimax over the Holder and Sobolev class inscribed within

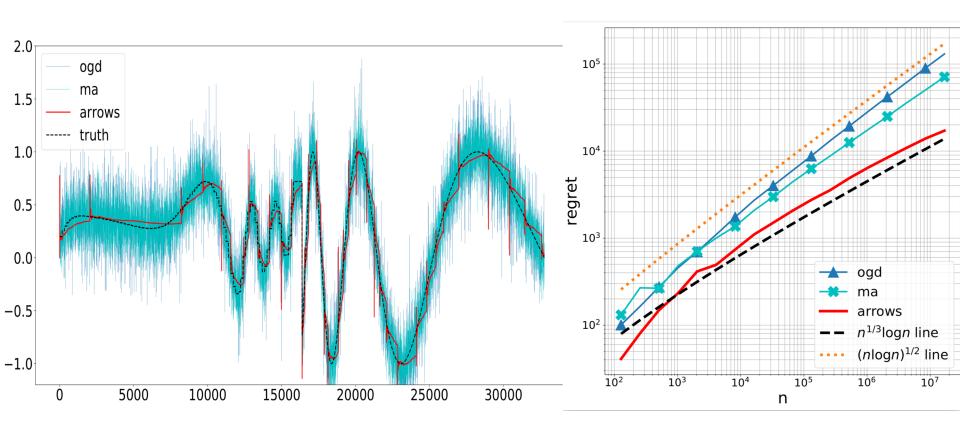
Adaptivity to parameters of the model: C_n , n, σ

Turns out that we don't have to know C_n

(e) Restart Rule: If
$$\frac{1}{\sqrt{k}} \sum_{l=0}^{\log_2(k)-1} 2^{l/2} \|\hat{\alpha}(t_h:t)[l]\|_1 > n^{-1/3} C_n^{1/3} \sigma^{2/3}$$

- Replace the threshold with: $\frac{\sigma}{\sqrt{k}}$
- n: (only in log factors) Standard doubling trick
- σ: Easy under the Gaussian noise model.

Experimental Results



Summary

 Optimal forecasting algorithm for any sequences within a total variation class.

- Adaptive to (almost) all parameters of the problem.
- Forecasting is harder than smoothing
- Unprecedented O(n^{1/3}) dynamic regret. We hit a n^{1/2}) lower bound in almost all problems in that setting.

Open problems:

- 1. Get rid of the iid noise assumption
 - Regret against to the prediction of the best function in the TV-class.
 - Zinkevich style "dynamic regret" / "tracking regret".
 - Non-constructive argument (Rakhlin and Sridharan, 2014)
- 2. Beyond quadratic loss functions
 - In nonstationary stochastic optimization: we have a lower bound of $\sqrt{nC_n}$ for strongly convex losses.
 - Faster rate possible for quadratic loss functions
 - What's in between quadratic loss and strongly convex losses?

Thank you for your attention!

- Paper available at: https://arxiv.org/pdf/1906.03364.pdf
- To appear at NeurIPS 2019.
- Student author: Dheeraj Baby
- Acknowledgment: Yining Wang, Xi Chen

(Chen, Wang and W., Operations Research, 2019)

• Ryan Tibshirani, anonymous reviewers.

