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Outline

* A tour of locally adaptive nonparametric regression
* From regression to forecasting

e Open problems



Nonparametric regression

50+ years of associated literature
[Nadaraya, Watson, 1964]
* Kernels, splines, local polynomials
e Gaussian processes and RKHS
* CART, neural networks

* Also known as smoothing, signal denoising
[filtering in signal processing & control.



Adapting to local smoothness

* Some parts smooth, other parts wiggly.

* Wavelets [Donoho&Johnston,1998], adaptive kernel
[Lepski,1999], adaptive splines [Mammen&Van De Geer,2001]

* a.k.a, multiscale, multi-resolution compression, used in
JPEG2000.

* New comer: Trend filtering! [Steidl,2006; Kim et. al. 2009,
Tibshirani, 2013; W.,Smola, Tibshirani, 2014]



Univariate trend filtering

—|ly — BlI5 + AID*H3
min o = 13+ Al I

Constant, k =0 Linear, k =1 Quadratic, £ = 2
(Fused lasso)

(figure extracted from: Tibshirani (2014))



A BIG Example: merger of two black holes

«10721 Gravitational wave: GW150914
8 , : :

Input: H1-strain
Trend filtering
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A BIG Example: merger of two black holes

%1071 Gravitational wave: GW150914

Trend filtering
—— Smoothing spline
— — General Relativity
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A BIG Example: merger of two black holes
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Theory behind trend filtering

(Tibshirani, 2014, Annals of Statistics)

* Observations: i = fo(lsz') +e, i=1....n

e TV-class:

Fe={f:TV(f®) < C}

* Error rate: OP(']‘zl_(2k+2)/(2k+3))

* Best achievable rate for linear smoothers

Op (TL_ (2k+1)/(2k+2) )



Generalizations of trend filtering

* To multi-dimensional signal observed on a lattices/grid:
images/video
e d>1, k=0 (Sadhanala, W., Tibshirani, NeurlPS 2016)
* d=2, k>0 (Sadhanala, W., Tibshirani, NeurlPS 2017)

* To signals on a general graphs
* (W., Sharpnack, Smola, Tibshirani, JIMLR 2016)

* Type of results:

* Minimax rate, minimax linear rate, adaptivity, phase
transition phenomena

* fast algorithms, various applications. Story of another time.

10



Back to univariate trend filtering: does it
solve the motivating application?

e L1-trend filtering (Kim et al, 2009)

 Motivation: time series!
e e.g., SnP500, CO2 emission, market demand
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 Two major problems in time series:
* Forensics: making things of what happened.
* Forecasting: predict the future
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This talk:
Online Nonparametric Forecasting

Individual sequence ¢, ... 6, €R

* Ateachtimestep (-1
« Prediction g, is made by the forecaster

ey, =0+ ¢ ,e ~ iidsubgauss(0,0°) is revealed by
Nature

R(n) = 321, Bl(0: — 0:)°]
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This talk:
Online Nonparametric Forecasting

Individual sequence ¢, ... 6, €R

* Ateachtimestep (=1.....n
» Prediction g, is made by the forecaster
o Y =0+ e e ~iidsubgauss(0,0°) s revealed by
Nature

R(n) = 321, Bl(0: — 0:)°]

More difficult than batch problem where one observes all noisy data points before fitting the data
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Weaken the adversary

* We aim to build a forecaster that has sub-linear TSE as a
function of n against all possible ground truth sequences

* Impossible unless some regularity conditions are applied to
the adversary’s moves

* Hence need to restrict ourselves to some class of ground
truth sequences
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Bounded Variation Class

* Bounded variation sequences ¢ — (¢,,...,0,)T € R"

where || DO, = S, |6; — ;1| < Ch,

From trend filtering problems, this is the Total Variation class with k=0, d=1.

« Constrain the variation budget
* Features a rich class of sequences
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Spatially Homogeneous trends




Spatially Inhomogeneous trends




Spatially Inhomogeneous trends

i,




Minimax TSE

~

R(n) = minaigos (maxe; ey, <c, R(n))

.For batch setting: R(n) = Q(n!/354/3C2?) 4’.

[6] Donoho et.al
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Minimax TSE

~

.For batch setting: R(n) = Q(n'/3¢*/3C5/?)

.It can be shown that for forecasting:
R(n) = Q(nt/354/3C2/3 4

R(n) = minaigos (maxe; ey, <c, R(n))

=
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This is a very basic problem, what
are existing ways of solving it?

 Classical time-series forecasting
* AR, MA, ARMA, ARIMA (Box-Jenkins style)

* Modern online learning and dynamic regret
* Incur an online sequence of square losses.
* Receive noisy gradients as feedback
* TSE = Dynamic Regret
n

A Zn%inét(ﬁt)
t=1 t=1

 What? Pointwise optimal comparators?

. Cons’;rain how quickly loss functions can change (Besbes et al,
2013

. Alter?ative view: constrain the comparator sequence (Zinkevich,
2003



Why Moving Averages won'’t

work?

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

PG St B0 O O

-
————— e

-2.0

5000 10000

MA win-size = 500

15000

20000

25000

30000

22



Why Moving Averages won'’t
work?
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Linear Forecasters are sub-
optimal

 MAis a Linear Forecaster: a policy that predicts a fixed
linear function of past observations

* [t can be shown that:

Rlzn(n) — minalgos (maX@;HD@HlSC’n R(TL) — Q(n1/2)>

[6] Donoho et.al
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Existing policies are suboptimal

Policy TSE Lower bound
Restarting OGD [1,2] O(n*2) Q(n¥?)
AOMD [3] O(n¥?) Q(n¥3)
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Restarting OGD in our setting




Restarting OGD in our setting




Restarting OGD in our setting




A method to design optimal policy

» Restarting online averages
» Key ldea: Adaptively choose the restarting schedule

« Adaptively partition the time horizon into various bins

', 1. ATV Iower bound => Bound # of times
O we restart
2. ATV upper bound => Upper bound the

error of a fixed baseline comparator
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Wavelets, and wavelet smoothing

» Classical (Haar, 1909) (Ricker, 1953)

» Alot of developments in 1980s and 1990s
e e.g., Daubechies, Coifmans et al (1980s)

& 4 K 2

(Alfréd Haar, 1885 - 1933)

PhD student of David Hilbert
« Use in statistics / statistical signal processing
e Donoho and Johnstone (1998) et al

* Implementation: e.g., JPEG2000, DjVu, Multi-resolution
analysis

30



Examples of wavelets and wavelet
transtforms
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Wavelet smoothing in one slide

* Model: ¢y = 0 + noise

« Wavelet smoothing algorithm
1. Wavelet Transform: (¢ = Hy

2. Thresholding: & = Soft-Threshold («)

3. Reconstruction: é: H—l&



Remarkable adaptivity of wavelet

smoothing
+ Choose A\ = O'\/2 logn

e (or use SUREShrink as an adaptive choice)

* Where are the functions coming from:
* Holder classes, Sobolev classes, Total Variation classes

e Besov class(p,q, R)

« Donoho (1995), Donoho & Johnstone (1998):

« Wavelet smoothing is simultaneously minimax (up to a log n
term) for all p, g, R> 0 in the Besov class



ARROWS: Adaptive Restarting Rule in
Online averaging with Wavelet
Shrinkage

ARROWS: inputs - observed y values, time horizon n, § € (0, 1], total variation
bound C,,, a hyper-parameter 5 > 6

1. Initialize t, = 1, newBin =1,y9 =0
2. Fort=1ton:

(a) if newBin == 1, predict xih = y;_1, else predict azih = Yt t—1

(b) set newBin = 0, observe y; and suffer loss (z\" — 6,)?

(c) Lety = pado(y,, ..., y+) and k be the padded length.

(d) Leta(ty, :t) =T(Hy)

(e) Restart Rule: If - See M ol2) 4ty 1]l > n3CH 20?3
then

1. setnewBin =1
1. sett, =t+1
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Our Main Results

« By using wavelet soft-thresholding as the child smoother,
our policy achieves the minimax regret:

R(n) = O(n'/3543C23 1+ DO|12)

« With nearly linear run-time of O(nlogn)

« The additional factor is why forecasting is harder than
smoothing.
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Blackbox Recipe to turn
smoothers into forecasters

* Two ingradients:

* 1. Smoother that is adaptively minimax and produces
estimates as smooth as the original with high probability.

« 2. Online Learner with logarithmic regret

* Any blackboxes that satisfy these oracle properties will
work.
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Beyond TV bounded sequences

TV class
sup > [f(wirn) = fza) < 1
0

neNL i=
o<1 <...<x,, <1

| DO <1

ARROWS calibrated
according to radius of a TV
class is adaptively minimax
over the Holder and

Sobolev class inscribed
within

Holder class
{F|1f(x) = fW)l < |z —yl}

1
[1DO|oc < —
n

Sobolev class
1
| (F@pan <

| DO|2 <

5=
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Adaptivity to parameters of the
model: C, n, 0

« Turns out that we don’t have to know C,
(e) Restart Rule: If ﬁ Zi(ﬁ“’(’f“')_l 2’/3]\(3(/,, AT ,,—1/3(*,1,/3(72/3

* Replace the threshold with: 9
Vk

 n: (only in log factors) Standard doubling trick

« 0. Easy under the Gaussian noise model.



Experimental Results
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Summary

« Optimal forecasting algorithm for any sequences within a
total variation class.

« Adaptive to (almost) all parameters of the problem.
» Forecasting is harder than smoothing

« Unprecedented O(n*{1/3}) dynamic regret. We hit a
n™1/2}) lower bound in almost all problems in that setting.



Open problems:

Get rid of the iid noise assumption

* Regret against to the prediction of the best function in the
TV-class.

 Zinkevich style “dynamic regret” / “tracking regret”.
* Non-constructive argument (Rakhlin and Sridharan, 2014)

Beyond quadratic loss functions
* In nonstationary stochastic optimization: we have a lower
bound of /nC,, for strongly convex losses.

* Faster rate possible for quadratic loss functions
 What’s in between quadratic loss and strongly convex losses?
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Thank you for your attention!
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