Per-instance Differential Privacy (on graphs)

Yu-Xiang Wang
UC Santa Barbara

Outline

Per-instance DP

• An example with linear regression

• pDP on Graphs

^{*} I prepared the slides in a rush... sorry for the missing references.

How do we choose ε ?

- No standard/guidelines.
- Need ε < 1: Quote Frank McSherry
 - "Anything much bigger than one is not a very reassuring guarantee. Using an epsilon value of 14 per day strikes me as relatively pointless."
- It's typical to use a larger ε in applications
 - Including some deployed DP systems
- A reasonable sentiment: DP is a worst-case guarantee
 - the actual privacy guarantee could be substantially better.

Recall the definition of DP

Differential Privacy:

Approx DP, CDP, Renyi DP and so on.

Privacy r.v.: ε(output)

"I get to choose the worst pair of adjacent data sets."

Per-instance DP: ε(Dataset, Individual)

• **Definition**: A is ε -pDP on (Z,z) if

- a strict generalization
- Measures the privacy loss a specific person z suffers from running A on a specific data set Z.

"I can observe the data but cannot change it."

Per-instance sensitivity

The per instance sensitivity of function f

$$\Delta_{\|\cdot\|_*}(f, Z, z) = \|f(Z) - f([Z, z])\|_*$$

- Global sensitivity: max over (Z,z)
- Local sensitivity: fix Z, max over z

Example: Linear regression

Data matrix

$$X = [x_1^T, x_2^T, ..., x_n^T]^T$$

Response vector

$$y = [y_1, ..., y_n]^T$$

How do we release:

$$\theta = (X^T X)^{-1} X^T y$$

Unbounded global sensitivity!

Let's do ridge regression

$$\theta_{\lambda} = (X^T X + \lambda I)^{-1} X^T y$$

And add noise to the output.

Per-instance sensitivity of linear regression coefficients

per-instance sensitivity in A-norm is

Statistical leverage score, when A ≈ X^TX

Multivariate Gaussian noise adding for pDP.

^{*}Can be calculated very efficiently using the Woodbury Identity.

What can I do with pDP?

- Generate comprehensive privacy summary.
 - What is the privacy loss incurred to users in my data set?
 - How is Bob's privacy loss comparing to Mary?

- As an analytical tool for data-dependent DP algorithm design
 - pDP to DP conversion
 - Complement smooth sensitivity (Nissim et al., 2007) and propose-test-release (Dwork and Lei, 2009).

pDP-based comprehensive privacy summary

Generate data set by linear Gaussian model. Fix the algorithm below.

Results of a pDP analysis for the posterior sampling algorithm for linear regression

 AdaOPS --- Sample from posterior distribution with an data-driven choice of prior / regularization weight

pDP for Graphs?

• Data matrix

$$X = [x_1^T, x_2^T, ..., x_n^T]^T$$

Gram matrix (covariance)

$$G = \sum_{\ell} x_{\ell} x_{\ell}^T = X^T X$$

Edge incidence matrix

$$D_{\ell} = (0, \dots, -1, \dots, 1, \dots, 0)$$

Graph Laplacian

$$L = D^T D = \sum_{\ell} D_{\ell} D_{\ell}^T$$

Edge / nodal pDP

A node is just a collection of edges

$$D_{\ell} = (0, \dots, -1, \dots, 1, \dots, 0)$$

- A Justin Bieber node has a large privacy loss.
- But 99.9% of typical twitter users have could have $\varepsilon = 0.1$.

pDP of any edge / node are efficiently computable!

Immediate applications

- Releasing Graph Laplacian
 - AnalyzeGauss, Johnson-Lindenstrauss
 - Can we use the same to releasing Graph Laplacian?
 - How about using graph sparsification?
- Will normalized Laplacian be more tractable?
- Private Laplacian smoothing over a graph?

$$x = \arg\min_{x} ||y - x||^2 + x^T Lx$$

Summary

- pDP as an analytical tool
- more interpretable/relevant privacy loss.

- Future work:
 - pDP analysis for more algorithms (graph mining algorithms?)
 - private release of pDP summaries.
 - Economic view of pDP in data collection process.

Thank you for your attention!

Yu-Xiang Wang, "Per-Instance Differential Privacy", Journal of Privacy and Confidentiality. Yu-Xiang Wang, "Revisiting differentially private linear regression: optimal and adaptive prediction & estimation in unbounded domain", UAI'18

Disclaimer

- pDP is not a replacement of DP.
 - It is an analytical tool to represent more refined privacy footprint of a randomized algorithm.
- We should not calibrate the noise of an algorithm to achieve a particular pDP level for an individual.

pDP is a data-dependent quantity. Cannot be naively revealed.

Stability of stationary points

- Let f be an optimization query:
 - Find me a stationary point of the loss function

$$f(Z) \in \{\theta | \nabla \mathcal{L}_Z(\theta) = 0\}$$

Lemma: Critical points of
$$\mathcal{L}_Z$$
 $\mathcal{L}_{add} = \mathcal{L}_Z + \ell_z$ obey that
$$\hat{\theta}' - \hat{\theta} = \left[\int_{\hat{\theta}}^{\hat{\theta}'} \nabla^2 \mathcal{L}_Z(t) dt \right]^{-1} \nabla \ell_z(\hat{\theta}')$$

AdaOPS for Linear Regression

1. DP-release of

$$ar{\lambda} > \lambda_{\min}(XX^T)$$
 1-Stable by Weyl's lemma

2. DP-release of

$$ar{B} > \| heta^* \|_2$$
 1-Stable after log(1+ .) transform

3. Choose balance of

$$\gamma,\lambda$$
 appropriately using the remaining ϵ,δ

Regularization plays a more important role than noise

1. Output:

$$\tilde{\theta} \sim N(\theta^*, \gamma^{-1}(XX^T + \lambda I)^{-1})$$

Which ``A'' to use for Multivariate Gaussian noise adding?

- Standard choice:
 - A

 ✓ Identity

 ⇔ Output Pert. [CMS-2013]
- Democratic choice:
 - A ∝ (X^TX)^2 ⇔ Obj Pert. [CMS-2013]
- ``Fisher'' choice:
 - $A \propto X^TX$ \Leftrightarrow OPS

Refined statistical analysis of OPS for linear regression

- Previous analysis [W. Fienberg, Smola, 2015]
 - $(1 + 4B/\epsilon)$ -efficiency and ϵ -DP
 - Restrict domain s.t. loss function < B
- Direct analysis using pDP:

$$1 + O\left(rac{d\log(1/\delta)}{n\epsilon^2}
ight)$$
 and (\varepsilon,\delta)-pDP for all unit x

No domain restriction needed!

Faster rate, better dimension-dependence than [Smith, 2008] and [Dwork & Smith, 2009], who first obtain such 1+ o(1) statistical efficiency.

Regret of OPS in agnostic setting

• Let

$$F(\theta) = 0.5 \|\mathbf{y} - X\theta\|^2$$

• OPS on regularized objective

$$F(\theta) + \frac{\lambda}{2} \|\theta\|_2^2$$

$$F(\tilde{\theta}) - F(\theta^*) \le \frac{d \log(d/\delta) \log(2/\delta)}{[\lambda + \lambda_{\min}(X^T X)]\epsilon^2} + \lambda \|\theta^*\|_2^2$$

With probability $1-\delta$

Matches both lower bounds in [Bassily et. al., 14].

High probability bound. Run time does not depend on ε. Works in unbounded domain. highly practical.

Data-dependent analysis

- Traditional DP algorithm design:
 - The algorithm receives a privacy budget ε
 - Calibrate noise to global sensitivity to achieve ε-DP
 - Calibrate noise to a data-dependent sensitivity to achieve ε-DP

- Post-hoc DP analysis:
 - Fix my randomized algorithm A
 - Analyze the resulting ε-DP from running A on any data set
 - Analyze the resulting ε-DP from running A on my data set Z

Different noise level on different data set.

Same noise level, different ε .

Is epsilon a privacy budget or a privacy loss?

A priori declaration of privacy budget

- DP algorithm design.
- Calibrating noise to global sensitivity.
- Privacy budget ε is a hard constraint to be met.

Post-hoc calculation of privacy loss

- Privacy loss as a random variable: ε(output)
- Advanced composition
- CDP, Renyi DP.
- Privacy amplification by subsampling

Is epsilon a privacy budget or a privacy loss?

- Traditional DP algorithm design:
 - The algorithm receives a privacy budget ε
 - Calibrate noise to sensitivity to achieve ε-DP

- Post-hoc DP analysis:
 - Fix my randomized algorithm A
 - Analyze the resulting ε-DP from running A

Post hoc privacy loss is not new

Privacy loss as a random variable: ε(output)

- Essentially what's driving much of the recent breakthroughs:
 - Advanced composition
 - Privacy amplification
 - CDP / RDP
 - And many more

Recall the definition of DP

• Differential Privacy:

Max-Divergence

Approx DP, CDP, RDP and so on