

Privacy Amplification by Subsampling and Renyi Differential Privacy

Yu-Xiang Wang
UC Santa Barbara

Joint work with Borja Balle and Shiva Kasiviswanathan

Outline

- Preliminary:
 - From DP to Renyi DP
 - Subsampled mechanisms and Privacy amplification
- Renyi DP of Subsampled Algorithms
- Composition and Analytical moments accountant
- Proof ideas
- Open problems

Renyi DP and algorithm-specific DP analysis

E-DP is a one number summary of the privacy guarantee

$$\log \frac{p_{\mathcal{M}}(X)(h)}{p_{\mathcal{M}}(X')(h)} \le \epsilon$$

 RDP (Mironov, 2017) characterizes the full-distribution of the privacy R.V. induced by a specific algorithm

$$D_{\alpha}(\mathcal{M}(X)||\mathcal{M}(X')) = \frac{1}{\alpha - 1}\log(\mathrm{MGF}_{\epsilon}(\alpha - 1)) \le \epsilon(\alpha)$$

Also closely related to CDP (Dwork & Rothblum, 2016) and zCDP (Bun & Steinke, 2016)

Renyi DP is natural for composition

- Compose linearly $\epsilon_{\mathcal{M}_1 \times \mathcal{M}_2}(\alpha) = \epsilon_{\mathcal{M}_1}(\alpha) + \epsilon_{\mathcal{M}_2}(\alpha)$
- RDP => (ϵ , δ)-DP $\delta \Rightarrow \epsilon$: $\epsilon(\delta) = \min_{\alpha > 1} \frac{\log(1/\delta)}{\alpha 1} + \epsilon_{\mathcal{M}}(\alpha 1),$ $\epsilon \Rightarrow \delta$: $\delta(\epsilon) = \min_{\alpha > 1} e^{(\alpha 1)(\epsilon_{\mathcal{M}}(\alpha 1) \epsilon)}.$
- Comparing to the composition theorems for (ξ, δ) -DP
 - Cleaner, no need to choose individual (\mathcal{E}_i , δ_i)
 - Elegantly handle the advanced composition of heterogenous mechanisms.
 - Efficiently computable, nothing #P-complete. (Murtagh&Vadhan, 2017)
 - Often better than the optimal composition with just $(\mathcal{E}_i, \delta_i)$ -DP.

Increasing list of mechanisms where we know how to precisely calculate their RDP

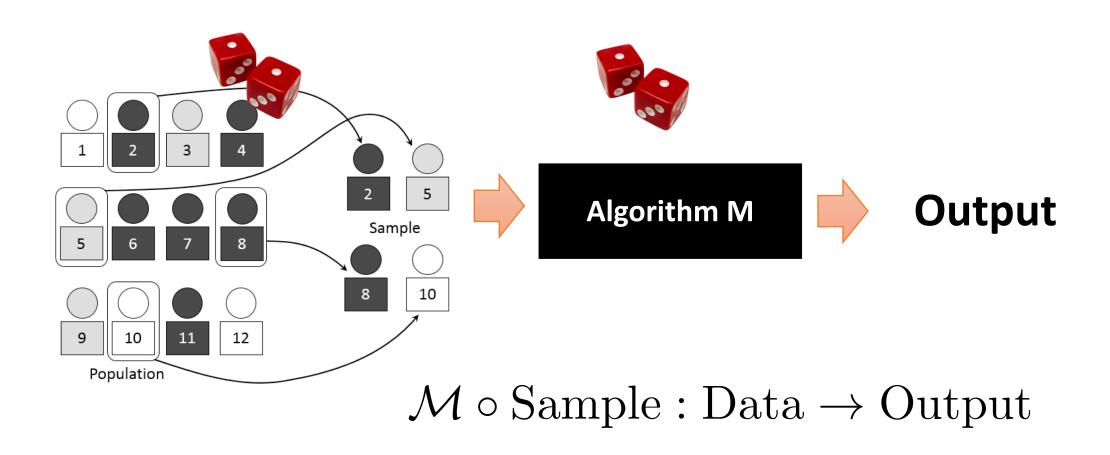
$$\epsilon_{\text{Gaussian}(\alpha)} = \frac{\alpha}{2\sigma^2},$$

$$\epsilon_{\text{Laplace}(\alpha)} = \frac{1}{\alpha - 1} \log \left(\left(\frac{\alpha}{2\alpha - 1} \right) e^{(\alpha - 1)/\lambda} + \left(\frac{\alpha - 1}{2\alpha - 1} \right) e^{-\alpha/\lambda} \right) \text{ for } \alpha > 1,$$

$$\epsilon_{\text{RandResp}(\alpha)} = \frac{1}{\alpha - 1} \log \left(p^{\alpha} (1 - p)^{1 - \alpha} + (1 - p)^{\alpha} p^{1 - \alpha} \right) \text{ for } \alpha > 1.$$

Many DP mechanisms that samples from an exponential family distribution have their RDP readily available in closed-form. (Geumlek, Song, Chaudhuri, 2017)

Subsampled Randomized Algorithm



Example: The Noisy SGD algorithm (Song et al. 2013; Bassily et. al. 2014)

$$\theta_{t+1} \leftarrow \theta_t - \eta_t \left(\frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} \nabla f_i(\theta_t) + Z_t \right)$$

- Randomly chosen minibatch (Subsampling)
- Then add gaussian noise (Gaussian mechanism)
- RDP analysis for subsampled Gaussian mechanism (Abadi et al., 2016)
 - Really what makes Deep Learning with Differential Privacy practical.

More general use of subsampling in algorithm designs

Ensemble learning with Bagging / Random Forest / Boosting (Breiman)

 Bootstraps, Jackknife, subsampling bootstrap (Efron; Stein; Politis and Romano)

- Sublinear time algorithms in exploratory data analysis
 - Sketching, mean, quantiles, data cleaning.

Do we have to do these on a case-by-case basis?

Privacy "amplification" by subsampling

Subsampling Lemma: If M obeys (ϵ,δ)-DP, then M \circ Subsample obeys that (ϵ',δ')-DP with $\delta'=\gamma\delta$

$$\epsilon' = \log(1 + \gamma(e^{\epsilon} - 1)) = O(\gamma \epsilon)$$

- First seen in "What can we learn privately?" (Kasiviswanathan et al., 2008)
- Subsequently used as a fundamental technical tool for learning theory with DP:
 - (Beimel et al., 2013) (Bun et al, 2015) (Wang et al., 2016)
- Most recent "tightened" revision above in:
 - Borja Balle, Gilles Barthe, Marco Gaboardi (2018)

This work: Privacy amplification by subsampling using Renyi Differential Privacy

- Can we prove a similar theorem for RDP?
 - Laplace mech., Randomized responses, posterior sampling and etc.
 - New tool in DP algorithm design.
 - Explicit constant.

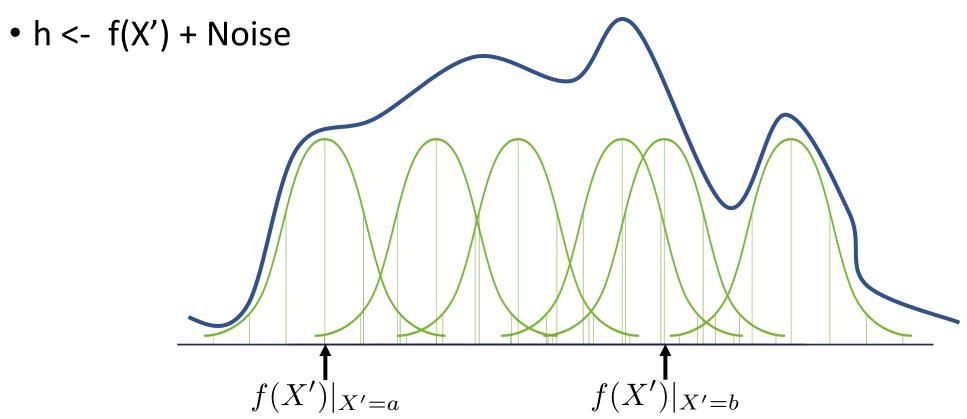
Two different types of subsampling

- Sampling without replacement
 - Random subset of size m from a data set of size n
 - Replace-one version of DP

- Poisson sampling
 - Each data point is included independently with probability
 - Equivalent to $m \sim Binomial(\gamma, n)$, then sample without replacement.
 - Add-remove version of DP
 - The mechanism M needs to be well-defined for all data size

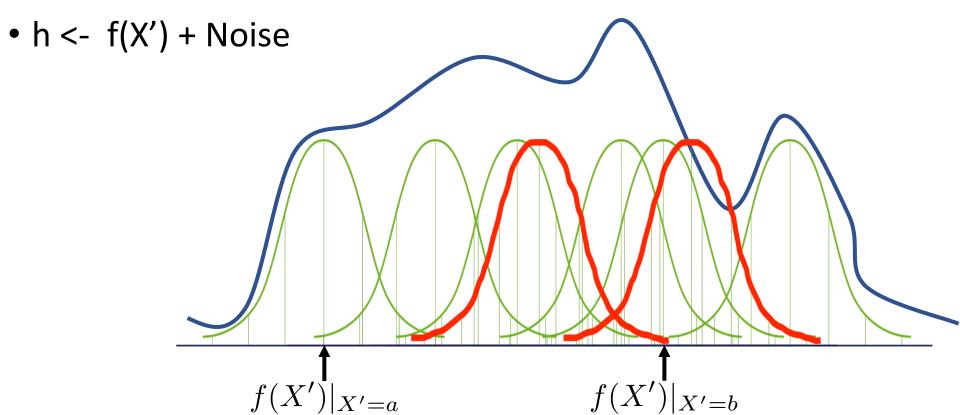
A subsampled mechanism samples from a mixture distribution with many mixture components!

X' <- Subsample(X)



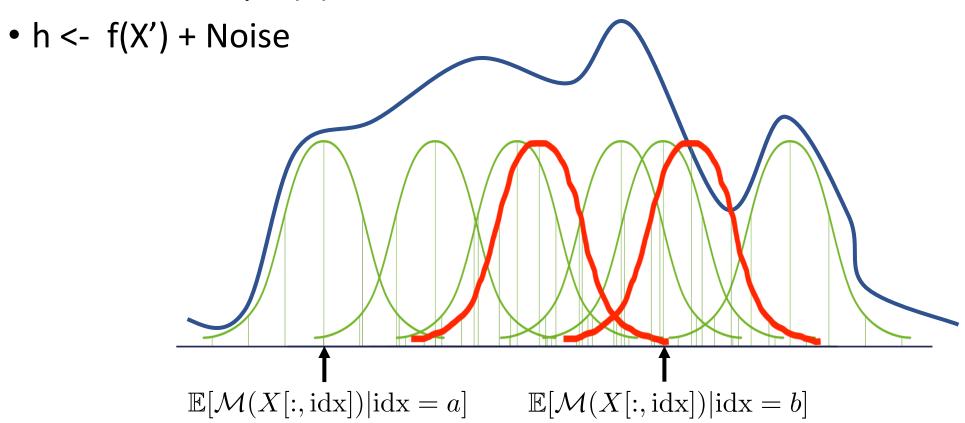
Changing to an adjacent data set

X' <- Subsample(X)



Changing to an adjacent data set

X' <- Subsample(X)



Main technical results

Theorem (Upper bound): Let M obeys $(\alpha, \mathcal{E}(\alpha))$ -RDP for all α . Then

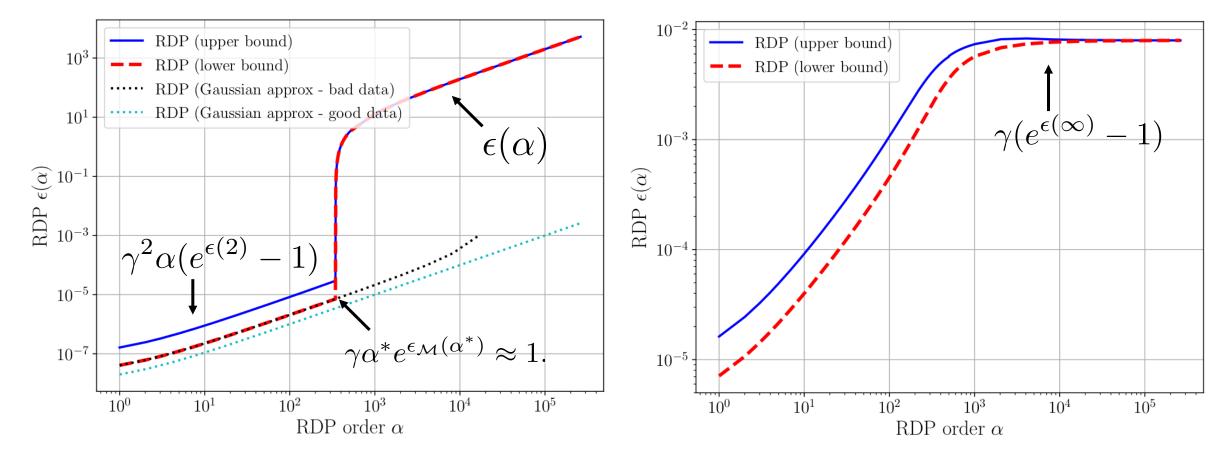
M(subsample(DATA)) obeys

$$\epsilon'(\alpha) \le \frac{1}{\alpha - 1} \log \left(1 + \gamma^2 \binom{\alpha}{2} \min \left\{ 4(e^{\epsilon(2)} - 1), e^{\epsilon(2)} \min\{2, (e^{\epsilon(\infty)} - 1)^2\} \right\} + \sum_{j=3}^{\alpha} \gamma^j \binom{\alpha}{j} e^{(j-1)\epsilon(j)} \min\{2, (e^{\epsilon(\infty)} - 1)^j\} \right).$$

Theorem (lower bound): Let M satisfies some mild conditions

$$\epsilon'(\alpha) \ge \frac{\alpha}{\alpha - 1} \log(1 - \gamma) + \frac{1}{\alpha - 1} \log\left(1 + \alpha \frac{\gamma}{1 - \gamma} + \sum_{j=2}^{\alpha} {\alpha \choose j} \left(\frac{\gamma}{1 - \gamma}\right)^j e^{(j-1)\epsilon(j)}\right).$$

Numerical evaluation of the bounds



(a) RDP of Subsampled Gaussian with $\sigma = 5$

(b) RDP of Subsampled Laplace with b = 0.5

Comparing to zCDP and tCDP

- zCDP: linear upper bound of the entire RDP function
 - Doesn't get amplified by subsampling

- tCDP: linear upper bound of the RDP up to a fixed threshold
 - Does get amplified by subsampling
- Not able to capture the fine-grained shape

Analytical moments accountant

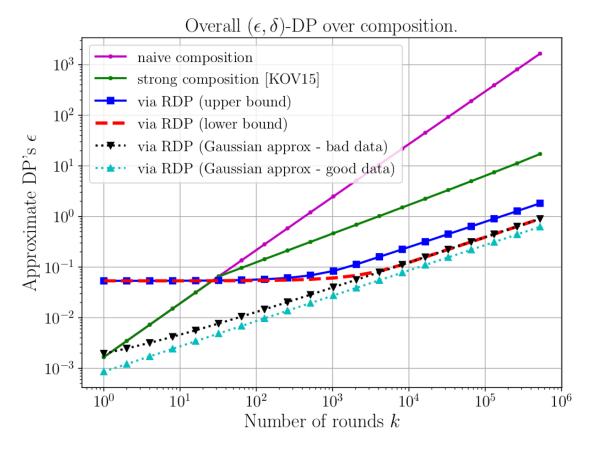
- Tracking RDP for all order as a symbolic functions.
- Numerical calculations for (ξ, δ) -DP guarantees.
- Automatically DP calculations for complex algorithms.
- Enable state-of-the-art DP for non-experts.

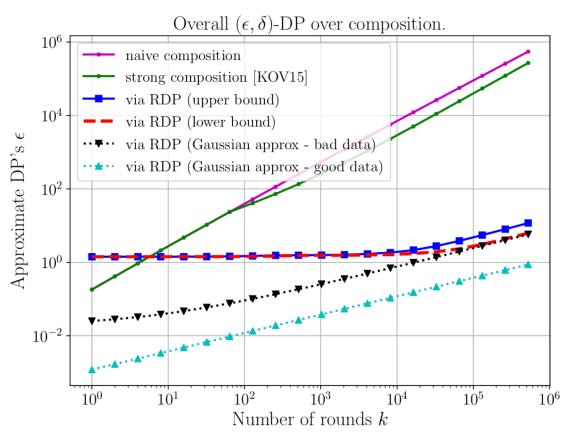
Open source project:

https://github.com/yuxiangw/autodp

pip install autodp

Using our bounds for advanced composition

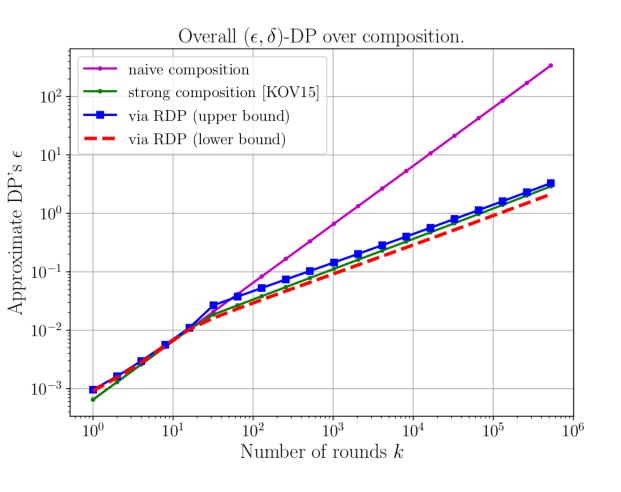


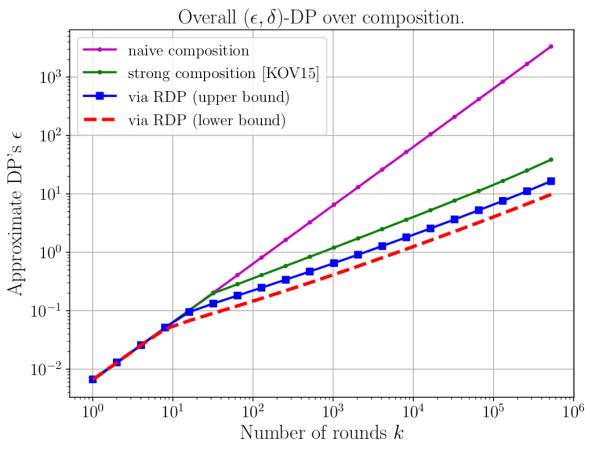


(a) Subsampled Gaussian with $\sigma = 5$

(a) Subsampled Gaussian with $\sigma = 0.5$

Using our bounds for advanced composition

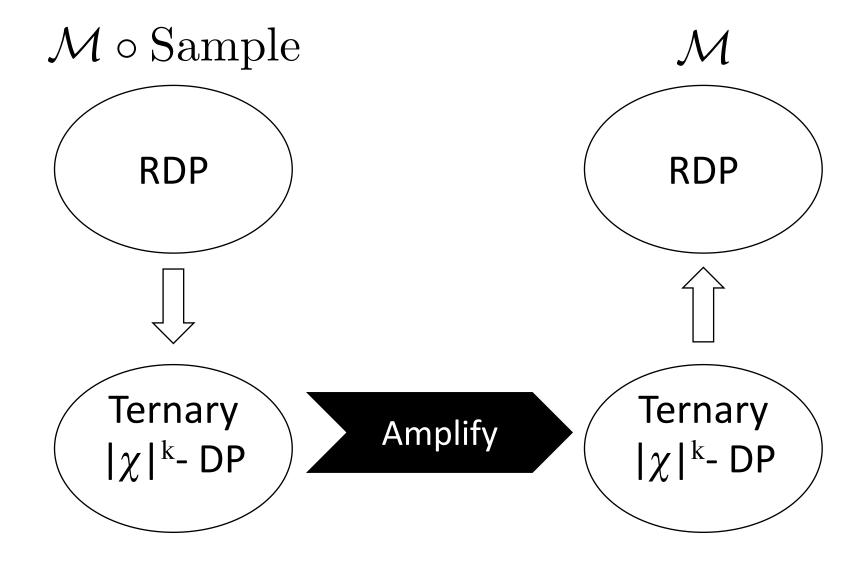




(c) Subsampled Laplace with b = 2

(d) Subsampled Laplace with b = 0.5

Proof idea (Upper bound)



A short detour to divergences

• Renyi divergence
$$D_{lpha}(p\|q) := rac{1}{lpha-1} \log \mathbb{E}_q[e^{lpha \log(p/q)}]$$

•
$$D_{1/2}(p||q) = -2\log(1 - \frac{\text{Hel}(p||q)}{2})$$

$$\lim_{\alpha \to 1} D_{\alpha}(p||q) = \mathrm{KL}(p||q)$$

•
$$D_2(p||q) = \log(1 + \chi^2(p||q))$$

f-divergence

$$D_f(p||q) := \mathbb{E}_q[f(p/q)]$$

Pearson-Vajda Divergences

$$\chi^{\ell}(p||q) := \mathbb{E}_q[(p/q-1)^{\ell}]$$
 $|\chi|^{\ell}(p||q) := \mathbb{E}_q[|p/q-1|^{\ell}]$

Pearson-Vajda divergences are moments of the linearized privacy loss

$$\mathbb{E}[\log(p/q)^{\alpha}] = \frac{\partial^{\alpha}}{\partial t^{\alpha}} [e^{K_{\mathcal{M}}(t)}](0),$$

$$\mathbb{E}[(p/q-1)^{\alpha}] = \Delta^{(\alpha)}[e^{K_{\mathcal{M}}(\cdot)}](0).$$
Discrete Derivative

Ternary $|\chi|^{\alpha}$ -divergences and $|\chi|^{\alpha}$ -DP

$$D_{|\chi|^{\alpha}}(p,q||r) := \mathbb{E}_r \left[\left| \frac{p-q}{r} \right|^{\alpha} \right].$$

Take supremum over three data sets that are mutually adjacent



$$\sup_{X,X',X'' \text{ mutually adjacent}}$$

$$\int_{\alpha, t} \left(D_{|\chi|^{\alpha}}(\mathcal{M}(X), \mathcal{M}(X') || \mathcal{M}(X'')) \right)^{1/\alpha} \le \zeta(\alpha).$$

Ternary $|\chi|^{\alpha}$ –DP and Binary $|\chi|^{\alpha}$ –DP are roughly the same

$$\sup_{X,X',X'' \text{ mutually adjacent}} \left(D_{|\chi|^{\alpha}}(\mathcal{M}(X),\mathcal{M}(X') \| \mathcal{M}(X'')) \right)^{1/\alpha} \leq \zeta(\alpha).$$

$$\sup_{X,X':d(X,X')\leq 1} \left(D_{|\chi|^{\alpha}}(\mathcal{M}(X) \| \mathcal{M}(X')) \right)^{1/\alpha} \leq \xi(\alpha).$$

Lemma: Ternary $|\chi|^{\alpha}$ -DP \approx Binary $|\chi|^{\alpha}$ -DP.

$$\xi(\alpha)^{\alpha} \le \zeta(\alpha)^{\alpha} \le 4\xi(\alpha)^{\alpha}$$

Step 1. Ternary $|\chi|^k$ -DP is natural for subsampling

Proposition (Privacy amplification for Ternary $|\chi|^{k}$ -DP)

Let a mechanism \mathcal{M} obey ζ -ternary- $|\chi|^{\alpha}$ -DP, then the algorithm $\mathcal{M} \circ$ sample obeys $\gamma \zeta$ -ternary- $|\chi|^{\alpha}$ -DP.

$$\begin{split} p &= \gamma p(\cdot|E) + (1-\gamma)p(\cdot|E^c) \\ q &= \gamma q(\cdot|E) + (1-\gamma)q(\cdot|E^c). \end{split}$$
 Still mixture distributions!
$$D_{|\chi|^j}(p,q\|r) = \mathbb{E}_r \left[\left(\frac{|p-q|}{r} \right)^j \right] = \gamma^j \mathbb{E}_r \left[\left(\frac{|p(\cdot|E)-q(\cdot|E)|}{r} \right)^j \right] \\ &= \gamma^j D_{|\chi|^j}(p(\cdot|E),q(\cdot|E)\|r). \end{split}$$

Step 2. Bounding RDP with Ternary $|\chi|^k$ -DP

$$\mathbb{E}_{q}\left[\left(\frac{p}{q}\right)^{\alpha}\right] = 1 + \binom{\alpha}{1}\mathbb{E}_{q}\left[\frac{p}{q} - 1\right] + \sum_{j=2}^{\alpha} \binom{\alpha}{j}\mathbb{E}_{q}\left[\left(\frac{p}{q} - 1\right)^{j}\right].$$

Bound binary with ternary:

$$\max_{p,q} \mathbb{E}_q \left[\left(\frac{p-q}{q} \right)^j \right] \le \max_{p,q,r} \mathbb{E}_r \left[\left(\frac{p-q}{r} \right)^j \right]$$

$$\mathbb{E}_q \left[\left(\frac{p}{q} \right)^{\alpha} \right] \le 1 + \sum_{j=2}^{\alpha} {\alpha \choose j} \gamma^j \zeta(j)^j,$$

Step 3. Bounding Ternary $|\chi|^k$ -DP with RDP

• From Ternary to Binary $|\chi|^k$ -DP, we lose a factor of 4, then

$$D_2(p||q) = \log(1 + \chi^2(p||q))$$

Lemma 16. Let X, Y be nonnegative random variables, for any $j \geq 1$,

$$\mathbb{E}[|X - Y|^j] \le \mathbb{E}[X^j] + \mathbb{E}[Y^j].$$

Lemma 17. Let X, Y be nonnegative random variables and with probability $1, e^{-\varepsilon}Y \leq X \leq e^{\varepsilon}Y$. Then for any $j \geq 1$,

$$\mathbb{E}[|X - Y|^j] \le \mathbb{E}[Y^j](e^{\varepsilon} - 1)^j.$$

Step 3. Bounding Ternary $|\chi|^k$ -DP with RDP

Theorem (Upper bound): Let M obeys (α , $\varepsilon(\alpha)$)-RDP for all α . Then M(subsample(DATA)) obeys

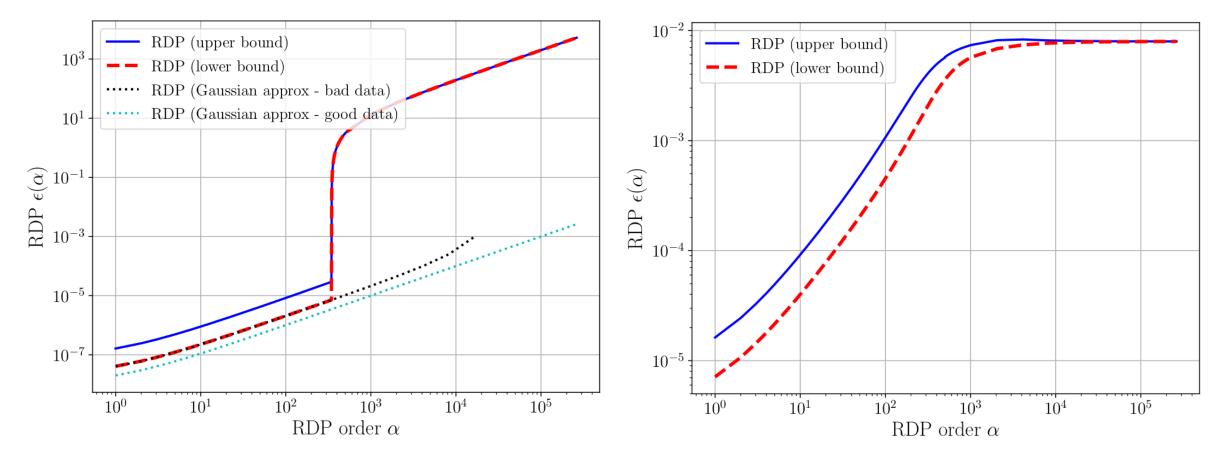
$$\epsilon'(\alpha) \leq \frac{1}{\alpha - 1} \log \left(1 + \gamma^2 \binom{\alpha}{2} \min \left\{ 4(e^{\epsilon(2)} - 1), e^{\epsilon(2)} \min\{2, (e^{\epsilon(\infty)} - 1)^2\} \right\} + \sum_{j=3}^{\alpha} \gamma^j \binom{\alpha}{j} e^{(j-1)\epsilon(j)} \min\{2, (e^{\epsilon(\infty)} - 1)^j\} \right).$$

Lower bound by constructing a data sets pair

- Construct a specific pair of data set
 - X = [0,0,0,0,...,0,1]
 - X' = [0,0,0,0,...,0,0]
- All subsamples from X' are identical! If the last data point is not chosen, so are the subsample from X

$$\mathbb{E}_{q} \left[\left(\frac{(1-\gamma)q + \gamma p}{q} \right)^{\alpha} \right] = \mathbb{E}_{q} \left[\left(1 - \gamma + \gamma \frac{p}{q} \right)^{\alpha} \right] = (1-\gamma)^{\alpha} \mathbb{E}_{q} \left[\left(1 + \frac{\gamma}{1-\gamma} \frac{p}{q} \right)^{\alpha} \right]$$
$$= (1-\gamma)^{\alpha} \left(1 + \alpha \frac{\gamma}{1-\gamma} + \sum_{j=2}^{\alpha} {\alpha \choose j} \left(\frac{\gamma}{1-\gamma} \right)^{j} \mathbb{E}_{q} \left[\left(\frac{p}{q} \right)^{j} \right] \right).$$

Constants matter in Differential Privacy. Can we close the constant gap?



(a) RDP of Subsampled Gaussian with $\sigma = 5$

(b) RDP of Subsampled Laplace with b = 0.5

Sometimes we can improve it somewhat.

• If there is a pair of worst case data sets that attains the RDP bound for all α .

• If the same pair of data sets also attains the Binary $|\chi|^{k}$ -DP bounds.

Then we have an improved bound.

This is true for Gaussian mechanism.

(New Results) RDP Amplification Under Poisson sampling Work with my

tudent

Work with my student Yuqing Zhu

Theorem (Poisson Sampling):

$$\begin{split} &\epsilon_{\mathsf{MoPoissonSample}}(\alpha) \leq \frac{1}{\alpha-1}\log\bigg\{(1-\gamma)^{\alpha-1}(\alpha\gamma-\gamma+1) \\ &+ \binom{\alpha}{2}\gamma^2(1-\gamma)^{\alpha-2}e^{\epsilon(2)} + 3 \sum_{\ell=3}^{\alpha} \binom{\alpha}{\ell}(1-\gamma)^{\alpha-\ell}\gamma^{\ell}e^{(\ell-1)\epsilon(\ell)}\bigg\}. \end{split}$$

Remark:

- Multiplicative error $O(1+\gamma)$ for small α , additive error $\log(3)/(\alpha-1)$ for large α .
- The factor of 3 in the lower order term can be removed if odd-order Pearson-Vajda divergences > 0
- Allows us to prove exact bound for Gaussian mechanism and Laplace mechanism.

Is the lower bound always achievable by all M? Counterexample from: (Nielsen and Nock, 2014)

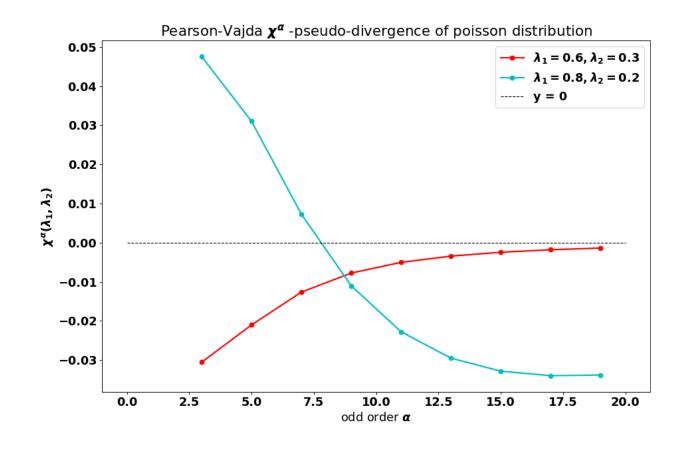


Figure 2. Negative χ^{α} divergence in Poisson distribution.

Main challenge in the Poisson Case

Asymmetry: X has n data points, X' has n+1 data points.

- Need to bound not just E[(p/q)^k] but also E[(q/p)^k].
- E[(q/p)^k] is easy, E[(q/p)^k] is challenging
 - Requires an explicit knowledge on the worst pair of data sets.

Take-home messages and open problems

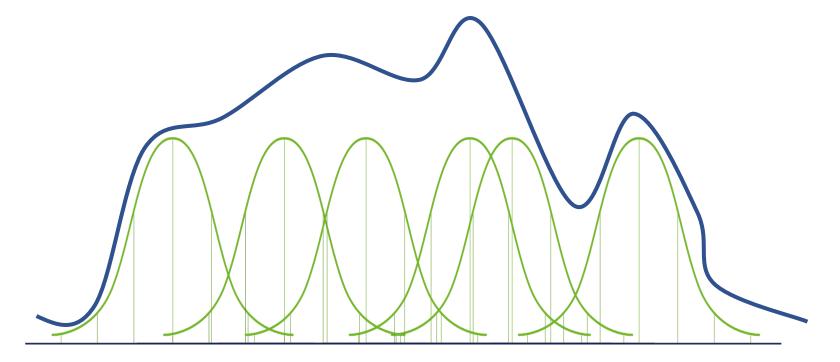
- 1. The first generic subsampling lemma for RDP mechanism.
- 2. Exact formula under Poisson sampling for some mechanisms.
- 3. Stronger composition than advanced composition.

- Open problems / interesting directions:
 - Closing the constant gap in the upper/lower bounds
 - Exploiting randomness from the data

W., Balle & Kasiviswanathan (2018). Subsampled Renyi Differential Privacy and Analytical Moments Accountant. *AISTATS'2019*Zhu & W. (2019) Poisson Subsampled Renyi Differential Privacy. Upcoming.

Open problem: Exploit the noise from the data in a valid way?

- Subsample with too small a noise added does not amplify privacy.
- Subsample with slightly larger noise smooth things out.
- Your peers may be hiding you underneath a privacy blanket!



References

- Privacy amplification by subsampling in DP
 - Kasiviswanathan, S. P., Lee, H. K., Nissim, K., Raskhodnikova, S., & Smith, A. (2011). What can we learn privately? SIAM Journal on Computing, 40(3), 793-826.
- Tight bounds for (\mathcal{E}, δ) -DP
 - Li, N., Qardaji, W., & Su, D. (2012). On sampling, anonymization, and differential privacy or, k-anonymization meets differential privacy. In CCS'12. ACM.
 - Balle, B., Barthe, G., & Gaboardi, M. (2018). Privacy amplification by subsampling: Tight analyses via couplings and divergences. In NeurIPS'18.
- RDP / Moments Accountant:
 - Mironov, I. (2017, August). Rényi differential privacy. In *IEEE CSF'17*. IEEE.
 - Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. "Deep learning with differential privacy." In CCS'16. ACM, 2016.
- Privacy amplification under RDP
 - W., Balle, Kasiviswanathan (2019) Subsampled RDP and Analytical Moments Accountant. In AISTATS'19.
 - Zhu and W. (2019) Poisson Subsampled RDP. Available soon.

By the joint convexity argument, we get:

$$\mathbb{E}_p[(q/p)^{\alpha}] \le \sum_J \mathbb{P}(J)\mathbb{E}_{\mu_0(J)} \left(\frac{(1-\gamma)\mu_0(J) + \gamma\mu_1(J)}{\mu_0(J)}\right)^{\alpha}$$

$$\mathbb{E}_{q}[(p/q)^{\alpha}] \leq \sum_{J} \mathbb{P}(J)\mathbb{E}_{(1-\gamma)\mu_{0}(J)+\gamma\mu_{1}(J)} \left(\frac{\mu_{0}(J)}{(1-\gamma)\mu_{0}(J)+\gamma\mu_{1}(J)}\right)^{\alpha}.$$

- But the latter is really hard to work with given only RDP upper bounds.
- Finding the pair of data sets that maximizes the latter is where things get a bit challenging.
- Our proof involves proposing an alternative decomposition to replace the second inequality.