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* Preliminary:
* From DP to Renyi DP
e Subsampled mechanisms and Privacy amplification

e Renyi DP of Subsampled Algorithms
* Composition and Analytical moments accountant
* Proof ideas

e Open problems



Renyi DP and algorithm-specific DP analysis

* E-DP is a one number summary of the privacy guarantee

pm(X)(h)
8 (X)) =€

* RDP (Mmironov, 2017) characterizes the full-distribution of the privacy R.V.
induced by a specific algorithm
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a—1

Do (M(X)[|M(XT)) = log(MGF¢(a — 1)) < €(a)

* Also closely related to CDP (Dwork & Rothblum,2016) and zCDP (Bun & Steinke,2016)



Renyi DP is natural for composition

* Compose linearly € A, x M (Oz) = €M, (Oz) + €EAMs (Oé)

*RDP=>(€,6)-DP 5. ..  (4)=mi log(1/0) , epla—1),
a>1 a—1
e = § - d(e) = Hl>1I11 cla—1)(em(a—1)—€)

 Comparing to the composition theorems for (€, 6)-DP
* Cleaner, no need to choose individual (€, §))
* Elegantly handle the advanced composition of heterogenous mechanisms.
* Efficiently computable, nothing #P-complete. (Murtagh&Vadhan, 2017)
* Often better than the optimal composition with just (&;, 6;)-DP.



ncreasing list of mechanisms where we know
now to precisely calculate their RDP

8%
€Gaussian(a) = 952’

1 o a—1)/\ a—1 —a /)
eLaplace(oz):a_llog(<2a_1>6( )/ ‘|’<2&_1>6 /) for a > 1,

1
p— log (po‘(l —p)T (1 — p)o‘pl_o‘) for ao > 1.

€RandResp(a) —

Many DP mechanisms that samples from an exponential family distribution
have their RDP readily available in closed-form. (Geumlek, Song, Chaudhuri, 2017)



Subsampled Randomized Algorithm

M o Sample : Data — Output




Example: The Noisy SGD algorithm (Song et al.
2013; Bassily et. al. 2014)

1
Ht—l—l <— Ht — Mt (I Z sz((gt) -+ Zt)

1€

 Randomly chosen minibatch (Subsampling)
* Then add gaussian noise (Gaussian mechanism)

* RDP analysis for subsampled Gaussian mechanism (Abadi et al., 2016)
* Really what makes Deep Learning with Differential Privacy practical.



More general use of subsampling in algorithm
designs

* Ensemble learning with Bagging / Random Forest / Boosting (Breiman)

* Bootstraps, Jackknife, subsampling bootstrap (Efron; Stein; Politis and
Romano)

* Sublinear time algorithms in exploratory data analysis
» Sketching, mean, quantiles, data cleaning.

Do we have to do these on a case-by-case basis?



Privacy “amplification” by subsampling

Subsampling Lemma: If M obeys (€,5)-DP, then M o Subsample
obeys that (€’,6’)-DP with 5’ — 75

e’ =log(1 + (e — 1)) = O(ve)

* First seen in “What can we learn privately?” (Kasiviswanathan et al., 2008)

* Subsequently used as a fundamental technical tool for learning theory with
DP:

e (Beimel et al., 2013) (Bun et al, 2015) (Wang et al., 2016)

* Most recent “tightened” revision above in:
e Borja Balle, Gilles Barthe, Marco Gaboardi (2018)



This work: Privacy amplification by
subsampling using Renyi Differential Privacy

e Can we prove a similar theorem for RDP?
* Laplace mech., Randomized responses, posterior sampling and etc.
* New tool in DP algorithm design.
* Explicit constant.



Two different types of subsampling

 Sampling without replacement
e Random subset of size m from a data set of size n
* Replace-one version of DP

* Poisson sampling
* Each data point is included independently with probability

e Equivalent to m ~ Binomial(y,n), then sample without replacement.

e Add-remove version of DP
e The mechanism M needs to be well-defined for all data size
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A subsampled mechanism samples from a mixture
distribution with many mixture components!

e X’ <- Subsample(X)
* h <- f(X’) + Noise
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Changing to an adjacent data set

e X’ <- Subsample(X)
* h <- f(X’) + Noise




Changing to an adjacent data set

e X’ <- Subsample(X)

v
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N < AN

EM(X[:,idx])|idx = a] EM(X|:,idx])|idx = D]



Main technical results

Theorem (Upper bound): Let M obeys (a ,€(a))-RDP for all a. Then
M(subsample( DATA)) obeys

e (a) < log (1 + 2 (g) min {4(66(2) — 1), @ min{2, (e>) — 1)2}}

+Z’V < ) (G=De() pin 2, (5 _1)3'})

a—1

Theorem (lower bound): Let M satisfies some mild conditions

/ o 1 J('—l)e(')
e(a) 2 —log(l—7) + — llog(1+a—+z<> J 3).




Numerical evaluation of the bounds
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Comparing to zCDP and tCDP

e zCDP: linear upper bound of the entire RDP function
* Doesn’t get amplified by subsampling

* tCDP: linear upper bound of the RDP up to a fixed threshold
* Does get amplified by subsampling

* Not able to capture the fine-grained shape



Analytical moments accountant

Gaussian mechanism

Subsampled Laplace = 1e-8
; RDPacct
Randomized response
* Tracking RDP for all order as a symbolic functions. Open source project:

https://github.com/yuxiangw/autodp

* Numerical calculations for (€, §)-DP guarantees.
pip install autodp

e Automatically DP calculations for complex algorithms.

* Enable state-of-the-art DP for non-experts.
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https://github.com/yuxiangw/autodp

Approximate DP’s €

Using our bounds for advanced composition

Overall (€,0)-DP over composition.
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Approximate DP’s €

Using our bounds for advanced composition

Overall (€,0)-DP over composition.
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Proof idea (Upper bound)
M o Sample

Ternary m Ternary
|x|*- DP |x|*- DP




A short detour to divergences

1

* Renyi divergence Da(pHQ) = o1 log o [ea log(p/Q)]

D1 2(pllg) = —21og(1 —

lim D, (p|lq) = KL(pl|q)
a—1

D (pllq) = log(1 + x*(pllq))

Hel (p]q)

)

f-divergence

Dy(pllq) :=

f(p/a)]

* Pearson-Vajda Divergences

X" (p|
x| (p

q) :

q) :

ﬂq[(p/q — 1)6:

“3q[lp/q — 1|€:




Pearson-Vajda divergences are moments of
the linearized privacy loss

Ellog(p/a)"] = - [*](0).

El(p/q — 1)%] = Al [M0](0).

I

Discrete Derivative



Ternary |x|®-divergences and |x|%-DP
Do (p, qllr) :=E, p;q

* Take supremum over three data sets that are mutually adjacent
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Ternary |x|*—DP and Binary |x|%—DP are
roughly the same

sup (D (M), MXDIM(X")) < (),

X, X", X" mutually adjacent

sup (D (MX)IM(X)) " < (o).

X, X"d(X,X")<1

Lemma: Ternary |x|%-DP = Binary |x|*-DP. ]

§la)® < ¢(a)* < 48(a)”




Step 1. Ternary |x|*DP is natural for
subsampling

Proposition (Privacy amplification for Ternary |x|*-DP )

Let a mechanism M obey (-ternary-|x|*-DP, then
the algorithm M o sample obeys ~v(-ternary-|y|*-DP.

p=p(|E)+ (1 —v)p(-|E)

Still mixture distributions!

q=q(-|E) + (1 —v)q(-|E). 1

Dol =B (2 0Y] = i, [(RUE BN

r




Step 2. Bounding RDP with Ternary |x|%-DP

<[] =15 0= (G-

_ i _ i
pP—dq pP—dq
Bound binary with ternary: H;%X Eq ( ) < max [, ( r )

- O o
Apply Natural Subsampling: tq (1_9> S 1 + (] ) ’YJ C(J )J ?
- - 2




Step 3. Bounding Ternary |x|*DP with RDP

* From Ternary to Binary |x|*-DP, we lose a factor of 4, then

D>(pllq) = log(1 + x*(pllq))

Lemma 16. Let X,Y be nonnegative random variables, for any j > 1,
E[|X - Y]] <E[X?] +E[Y7].

Lemma 17. Let X, Y be nonnegative random variables and with probability 1, e Y <
X < €Y. Then for any 57 > 1,

E[|X —Y}'] <E[Y7](ef —1)7.



Step 3. Bounding Ternary |x|*DP with RDP

Theorem (Upper bound): Let M obeys (a ,€(a))-RDP for all a. Then
M(subsample( DATA)) obeys

log (1 + 2 (g) min {4(66(2) — 1), @ min{2, (e>) — 1)2}}

@ |« . . :
I < _)€<g—1>e<a> min{2, () 1)3})

€ (a) <

a—1




Lower bound by constructing a data sets pair

* Construct a specific pair of data set
e X=1[0,0,0,0,...,0,1]
« X’=1[0,0,0,0,...,0,0]

* All subsamples from X’ are identical! If the last data point is not
chosen, so are the subsample from X

() s ) T ()
(15 £ () (22 = [0)])




RDP ¢(a)

Constants matter in Differential Privacy. Can
we close the constant gap?
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Sometimes we can improve it somewhat.

* If there is a pair of worst case data sets that attains the RDP bound for
all a.

* |f the same pair of data sets also attains the Binary |x|*DP bounds.
* Then we have an improved bound.

* This is true for Gaussian mechanism.



(New Results) RDP Amplification Under ,
PO|SSOn Samp“ng Work with my student g

Yuging Zhu

Theorem (Poisson Sampling):

| -
E./\/loPoissonSampIe(a) < o — 1 log {(1 — ”)/) 1(()5’7 — Y+ ].)
+ (g) V(1= 2@ {3 @) (1- v)o‘_evee“‘”“@}.
=3

Remark:
e Multiplicative error O(1+y) for small a, additive error log(3)/(a-1) for large a.

e The factor of 3 in the lower order term can be removed if odd-order Pearson-

Vajda divergences >0
* Allows us to prove exact bound for Gaussian mechanism and Laplace

mechanism. 33




s the lower bound always achievable by all M?
Counterexample from: (Nielsen and Nock, 2014)

Pearson-Vajda x? -pseudo-divergence of poisson distribution
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Figure 2. Negative x“ divergence in Poisson distribution.



Main challenge in the Poisson Case

 Asymmetry: X has n data points, X’ has n+1 data points.

* Need to bound not just E[ (p/q)*k] but also E[(q/p)"k].

* E[(a/p)k] is easy, E[(a/p)"k] is challenging

* Requires an explicit knowledge on the worst pair of data sets.



Take-home messages and open problems

1. The first generic subsampling lemma for RDP mechanism.
2. Exact formula under Poisson sampling for some mechanisms.
3. Stronger composition than advanced composition.

* Open problems / interesting directions:

 Closing the constant gap in the upper/lower bounds
* Exploiting randomness from the data

W., Balle & Kasiviswanathan (2018). Subsampled Renyi Differential Privacy
and Analytical Moments Accountant. AISTATS'2019

Zhu & W. (2019) Poisson Subsampled Renyi Differential Privacy. Upcoming.



Open problem: Exploit the noise from the
data in a valid way?

* Subsample with too small a noise added does not amplify privacy.
e Subsample with slightly larger noise smooth things out.
* Your peers may be hiding you underneath a privacy blanket!
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By the joint convexity argument, we get:

E,[(¢/p)%] < 3 P(I)E,0 sy ((1 - v)uig& )+ wlw)

a(0/0°) < ¥ POy (7=t o)

- But the latter is really hard to work with given only RDP upper bounds.
- Finding the pair of data sets that maximizes the latter is where things get a bit challenging.
- Our proof involves proposing an alternative decomposition to replace the second inequality.



