New Paradigms and Optimality Guarantees in Statistical Learning and Estimation

Yu-Xiang Wang

In partial fulfillment of
PhD in Statistics and Machine Learning

Thesis committee:
Ryan J. Tibshirani (Chair), Jing Lei, Alex J. Smola, Adam D. Smith (Boston Univ.), Steve E. Fienberg
Acknowledgments
The empirical success of ML

Machine Learning Applications

- Optical character recognition
- Political campaigns
- Predictive policing
- Surveillance systems
- Facial recognition
- Recommendation engines
- Filtering algorithms/news feeds
- Personal assistants: Google Now, Microsoft Cortana, Apple Siri, etc.
- Advertising and business intelligence
- Autonomous (“self-driving”) vehicles
New challenges that arises

Data challenge
- Data owner won’t share unless privacy is promised.

Modeling challenge
- How general
- How specific
- What’s the tradeoff?

Implicit overfitting:
- How do we ensure the learned outcome is statistically valid
- Even after multiple rounds of selections
Outline

• Part I: Privacy (25 min)

• Part II: Trend filtering (25 min)

• Part III: Sequential selective estimation (10 min)
Part I: Privacy
Lessons from privacy breaches

- Need methods with provably privacy guarantee!
- Need new ways to interact with datasets.
History of privacy technologies

• Statistical disclosure control
 – [Duncan et. al., Hundepool et. al., since 1970s]

• k-anonymity, l-divergence, t-closeness
 – [Sweeny, Machanavajjhala et. al., Li et. al., 2002-2007]

• Differential privacy
 – [Dwork, McSherry, Nissim, Smith, 2006++]
 – Gödel Prize 2017
Formal definition of DP

- Let Z, Z' be any two datasets that differ only by one row, and A is a randomized algorithm. We say A is ϵ-DP if for all output h

$$\sup_{Z, Z': d(Z, Z') \leq 1} \sup_{h \in \mathcal{H}} \log \frac{\mathbb{P}_{h \sim A(Z)}(h)}{\mathbb{P}_{h \sim A(Z')} (h)} \leq \epsilon$$

small δ $(\epsilon, \delta) - DP$
Example: Who voted for Trump?

• How many people in this room voted for Trump?

• Let’s say the answer is 8.
 – If I know the political view of everybody, except Ryan.
 – Then I can easily infer his choice.

• DP releases: 8 + noise.
Differentially private machine learning

Randomized algorithm

Data

Feature-label pairs
Unlabeled features
Feature points

Learning Algorithm

Support Vector Machine
K-means clustering
Kernel density estimation

Classifier
K cluster centers
Estimated density function

\[\log \frac{\mathbb{P}(f \in S|\text{Data})}{\mathbb{P}(f \in S|\text{Data}')} \leq \epsilon \]

[Blum et. al., Kasiviswanathan et. al., Chaudhuri et. al., Duchi et. al., Kifer et. al., Bassily et. al., 2008 onwards]
Example: Recommendation System

- If A is private, prediction is “post-processing”.
Contribution

• What I talked about at my proposal
 – Learnability under differential privacy [W., Lei, Fienberg, JMLR’16]
 – On-Average KL-privacy [W., Lei, Fienberg, PSD’16]

• Questions I received:
 – On-Average KL private is not quite private.
 – OPS might not be the best algorithm for linear regression.

• Today:
 – Per-instance DP and pDP for all.
 – AdaOPS algorithm for private linear regression
The need to weaken DP

• In theory
 – A lot of simple problems are not privately learnable. (W., Lei, Fienberg, JMLR’16)

• In practice
 – Poor utility due to too much noise. e.g., Contingency Table (Fienberg et. al. 2010), GWAS data (Yu et. al., PSD’14).
 – Hard to use. Need a lot of tricks/hacks to work. e.g., “clipping” “rescaling” as in the Netflix data. (Liu, W., Smola, RecSys’15)
On-Average KL-Privacy

• Differential Privacy: Max-Divergence

\[
\sup_{Z,Z':d(Z,Z') \leq 1} \sup_{h \in \mathcal{H}} \log \frac{p_{h \sim A(Z)}(h)}{p_{h \sim A(Z')} (h)} \leq \epsilon
\]

• On-Average KL-Privacy:

\[
\mathbb{E}_{Z \sim D^n, z \sim D} \mathbb{E}_{h \sim A(Z)} \left[\log \frac{p_{h \sim A(Z)}(h)}{p_{h \sim A([Z_{-1}, z])} (h)} \right] \leq \epsilon.
\]

KL-Divergence
Per-instance DP

- **Definition**: A is \(\varepsilon \)-pDP on \((Z, z)\) if

\[
\sup_{Z, Z' : d(Z, Z') \leq 1} \sup_{h \in \mathcal{H}} \log \frac{p_{h \sim A(Z)}(h)}{p_{h \sim A(Z')} (h)} \leq \varepsilon
\]

- a strict generalization
- Measures the privacy loss a specific person \(z \) suffers from running A on a specific data set \(Z \).
Implicit adversary models

• DP:
 – Adversary choose both data set Z and target z.

• pDP for all:
 – Adversary is given a fixed Z, but can choose a target z

• pDP:
 – Adversary is given data set Z and target z
pDP vs. DP: an illustration

Generate data set by linear Gaussian model. Fix the algorithm below.

\[\tilde{\theta} \sim N((X^T X + I)^{-1} X y, \sigma^2 I), \quad \sigma = 4 \]
Per-instance sensitivity

- The per instance sensitivity of function f

\[
\Delta_{\| \cdot \|_*(f, Z, z)} = \| f(Z) - f([Z, z]) \|_*
\]

- Global sensitivity: max over (Z, z)

- Local sensitivity: fix Z, max over z
Stability of stationary points

• Let f be an optimization query:
 – Find me a stationary point of the loss function
 \[f(Z) \in \{ \theta | \nabla \mathcal{L}_Z(\theta) = 0 \} \]

Lemma: Critical points of \mathcal{L}_Z and $\mathcal{L}_{[Z,z]} = \mathcal{L}_Z + \ell_z$ obey that

\[
\hat{\theta}' - \hat{\theta} = \left[\int_{\hat{\theta}}^{\hat{\theta}'} \nabla^2 \mathcal{L}_Z(t) \, dt \right]^{-1} \nabla \ell_z(\hat{\theta}')
\]
Per-instance sensitivity of linear regression coefficients

• per-instance sensitivity in A-norm is

\[|y - x\hat{\theta}'| \sqrt{x^T (X^TX)^{-1} A (X^TX)^{-1} x} \]

Residual/prediction error

Statistical leverage score, when \(A \approx X^TX \)

• Multivariate Gaussian mechanism for pDP.
Which ``A'' to use for Multivariate Gaussian noise adding?

• **Standard choice:**
 - $A \propto \text{Identity} \iff \text{Output Pert.} \ [\text{CMS-2013}]

• **Democratic choice:**
 - $A \propto (X^TX)^2 \iff \text{Obj Pert.} \ [\text{CMS-2013}]

• **``Fisher'' choice:**
 - $A \propto X^TX \iff \text{OPS}$
Refined statistical analysis of OPS for linear regression

• Previous analysis [W. Fienberg, Smola, 2015]
 – $(1 + 4B/\varepsilon)$-efficiency and ε-DP
 – Restrict domain s.t. loss function $< B$

• Direct analysis using pDP:
 $$1 + O \left(\frac{d \log(1/\delta)}{n\varepsilon^2} \right)$$
 and (ε, δ)-pDP for all unit x

 No domain restriction needed!

Faster rate, better dimension-dependence than [Smith, 2008] and [Dwork & Smith, 2009], who first obtain such $1+ o(1)$ statistical efficiency.
Regret of OPS in agnostic setting

• Let \(F(\theta) = 0.5\|y - X\theta\|^2 \)

• OPS on regularized objective \(F(\theta) + \frac{\lambda}{2}\|\theta\|^2 \)

\[
F(\tilde{\theta}) - F(\theta^*) \leq \frac{d \log(d/\delta) \log(2/\delta)}{[\lambda + \lambda_{\text{min}}(X^TX)]\varepsilon^2} + \lambda\|\theta^*\|^2_2
\]

With probability 1-\(\delta \)

Matches both lower bounds in [Bassily et. al., 14].

High probability bound. Run time does not depend on \(\varepsilon \).
Works in unbounded domain. highly practical.
Two expected complaints

• Linear regression is a bit restrictive.
 - All can be generalized!
 - Two ongoing work:
 - (1) Self-concordant GLM
 - (2) Morse-Smale stable nonconvex optimization

• \(pDP \) for all \(\neq DP \) (cannot calibrate noise to \(\varepsilon \))
 - Next slide!
 - \(pDP \implies DP \) with Propose-Test-Release [Dwork & Lei, 2009]
AdaOPS for Linear Regression

1. DP-release of $\bar{\lambda} > \lambda_{\min}(XX^T)$ 1-Stable by Weyl's lemma

2. DP-release of $\bar{B} > \|\theta^*\|_2$ 1-Stable after log(1+.) transform

3. Choose γ, λ appropriately using the remaining balance of ε, δ

 Regularization plays a more important role than noise

1. Output: $\tilde{\theta} \sim N(\theta^*, \gamma^{-1}(XX^T + \lambda I)^{-1})$
AdaOPS on real data sets

- There are 34 others data sets with results that look just like these.

- Other methods compared to:
 NoisySGD, sufficient Statistics perturbation, and output perturbation.
 None of them is stronger than ObjPert in this case.
Summary of Part I

• pDP provides more comprehensive summary of the privacy effect of randomization.

• pDP can be used as a tool to design data-adaptive DP algorithm. (complementary to PTR and smooth sensitivity)

• AdaOPS is quite promising for practical DP learning.

• Future work:
 – Privately release pDP losses.
 – pDP and the economics of data collection
Part II Trend filtering
Nonparametric regression

• 50+ years of associated literature
 [Nadaraya, Watson, 1964]
 – Kernels, splines, local polynomials
 – Gaussian processes and RKHS
 – CART, neural networks

• Also known as smoothing, signal denoising /filtering in signal processing & control.
Adapting to local smoothness

• Some parts smooth, other parts wiggly.
 – a.k.a, multiscale, multi-resolution compression, used in JPEG2000.
Univariate trend filtering

$$\min_{\beta \in \mathbb{R}^n} \frac{1}{2} \| y - \beta \|_2^2 + \lambda \| D^{(k+1)} \beta \|_1$$

Constant, $k = 0$
(Fused lasso)

Linear, $k = 1$

Quadratic, $k = 2$
A BIG Example: merger of two black holes

Gravitational wave: GW150914

Input: H1-strain

Trend filtering
A BIG Example: merger of two black holes

Gravitational wave: GW150914
A BIG Example: merger of two black holes

Gravitational wave: GW150914

Trend filtering
Smoothing spline
General Relativity
Theory behind trend filtering

- Observations:
 \[y_i = f_0(x_i) + \epsilon_i, \quad i = 1, \ldots, n \]

- TV-class:
 \[\mathcal{F}_k = \{ f : \text{TV}(f^{(k)}) \leq C \} \]

- Error rate:
 \[O_P(n^{-\frac{2k+2}{2k+3}}) \]

- Drawback: only in for univariate functions.
Contributions

• Trend Filtering on Graphs [W., Sharpnack, Smola, Tibshirani, 2014]
 – Method, properties, algorithm, applications
 – Error bounds depends on graph-theoretic quantities

• Minimax theory on d-dim lattice grids.
 – For k=0, [Sadhanala, W., Tibshirani, 2016]
 – For k > 0, d=2 [Sadhanala, W., Sharpnack, Tibshirani, 2017]
Trend filtering on graphs

$$\min_{\theta \in \mathbb{R}^n} ||y - \theta||_2^2 + \lambda ||\Delta^{(k+1)}\theta||_1$$

$$\Delta^{(1)} = D, \quad \Delta^{(2)} = L, \quad \Delta^{(3)} = DL, \quad \Delta^{(4)} = L^2, \quad \ldots$$
Example: TV-de-noising

Noisy image | Laplacian smoothing | TV denoising

\[\hat{\theta}^{\text{LS}} = \arg \min_{\theta} \| \theta - y \|^2 + \lambda \| D\theta \|^2_2 = (\lambda D^T D + I)^{-1} y \]
\[\text{a linear smoother} \]

\[\hat{\theta}^{\text{TV}} = \arg \min_{\theta} \| \theta - y \|^2 + \lambda \| D\theta \|_1 \quad \text{— not a linear smoother} \]
Minimax theory of GTF on grids

An estimator $\hat{\theta} : \mathbb{R}^n \to \mathbb{R}^n$ that takes in $\theta_0 + \text{i.i.d. Gaussian noise}$ and produces an estimator.

Mean square error:

$$\text{MSE}(\hat{\theta}, \theta_0) = \frac{1}{n} \| \hat{\theta} - \theta_0 \|_2^2.$$

Minimax risk:

$$R(\mathcal{K}) = \min_{\hat{\theta}} \max_{\theta_0 \in \mathcal{K}} \mathbb{E}[\text{MSE}(\hat{\theta}, \theta_0)].$$

Minimax linear risk:

$$R_L(\mathcal{K}) = \min_{\hat{\theta} \text{ linear}} \max_{\theta_0 \in \mathcal{K}} \mathbb{E}[\text{MSE}(\hat{\theta}, \theta_0)].$$
Define “function” classes

TV Classes: \(T_d(C_n) = \{ \theta : \| D\theta \|_1 \leq C_n \} \),

Sobolev Classes: \(S_d(C'_n) = \{ \theta : \| D\theta \|_2 \leq C'_n \} \),

Where \(D \) is the incidence matrix for the d-dimensional grid graph with a total of \(n \) vertices.
Summary of known results in 1D

$\mathcal{T}_1(1)$: TV-denoising / Fused Lasso are optimal

- Linear smoothers are suboptimal
- Minimax linear rate is $n^{-1/2}$

$S_1(n^{-1/2})$:

- Linear smoothers are optimal
- Minimax rate is $n^{-2/3}$
- Minimax rate is $n^{-2/3}$

[Donoho, Liu, MacGibbon, 1994; Johnstone and Donoho, 1998]
Curse of dimensionality

- As d gets larger, on Sobolev space
- Classic nonparametric regression theory gives
 \[n \sim \frac{2k}{2k+d} \]
- We should expect the rate to get worse as d increase.
A surprising upper bound

[Hutter and Rigollet, 2016]

Theorem (Hütter and Rigollet, 2016): Total variation denoising estimator obeys

\[
\text{MSE}(\hat{\theta}^{TV}, \theta_0) = O_P \left(\frac{C_n \log n}{n} \right) \quad \text{for } d = 2,
\]

\[
\text{MSE}(\hat{\theta}^{TV}, \theta_0) = O_P \left(\frac{C_n \sqrt{\log n}}{n} \right) \quad \text{for } d \geq 3,
\]

Is this too good to be true?
Where did the curse-of-dimensionality go?
An even more surprising upper bound

Lemma (Sadhanala, W. and Tibshirani, 2016): A trivial estimator \(\hat{\theta}_{\text{mean}} \) that outputs \(\bar{y} \) obeys

\[
\sup_{\theta_0 \in \mathcal{F}(C_n)} \mathbb{E}[\text{MSE}(\hat{\theta}_{\text{mean}}, \theta_0)] = O \left(\frac{\sigma^2 + C_n^2 \log n}{n} \right)
\]

- This is a linear smoother!
Matching lower bounds for both surprising upper bounds

Theorem (Sadhanala, W. and Tibshirani, 2016): For constant d, and nontrivial region of C_n:

\[
R(\mathcal{T}_d(C_n)) \asymp \frac{\sigma^2 + \sigma C_n}{n}.
\]

\[
R_L(\mathcal{T}_d(C_n)) \asymp \frac{\sigma^2 + C_n^2}{n}.
\]

- TV-denoising is optimal.
- No linear smoother can outperform the mean estimator.
How do we make sense of all these?
Rates under canonical scaling

\[\mathcal{T}_d(n^{1-1/d}) \]

TV-denoising / Fused Lasso are optimal

Linear smoothers are essentially trivial!

Minimax linear rate is \(\Theta(1) \)

Minimax rate is \(n^{-2/(2+d)} \)

Minimax rate is \(n^{-1/d} \sqrt{\log n} \)

- **Constant minimax linear rate!**
- **Starting** \(d>2 \), we do not get local adaptivity for free!
A few notes about proof techniques

• Upper bounds:
 – d-dim grid’s Laplacian matrix is structured and can be diagonalized by DCT
 – Prove that D is incoherent
 – Careful calculation and thresholding the spectrum

• Lower bounds:
 – Embedding L1 ball inside a TV-ball
 – Gaussian model selection (Berge and Massart, 2001)
 – Linear smoother lower bounds: use and quadratically convex hull technique (Donoho, Liu, MacGibbon, 1990)
Summary of Part II

<table>
<thead>
<tr>
<th></th>
<th>$d=1$</th>
<th>$d=2$</th>
<th>$d>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k=0$</td>
<td>$n^{-2/3}$</td>
<td>$n^{-2/4}$</td>
<td>$n^{-\frac{1}{d}}$</td>
</tr>
<tr>
<td>$k=1$</td>
<td>$n^{-4/5}$</td>
<td>$n^{-4/6}$</td>
<td>?</td>
</tr>
<tr>
<td>$k>1$</td>
<td>$n^{-\frac{2k+2}{2k+3}}$</td>
<td>$n^{-\frac{2k+2}{2k+4}}$</td>
<td>?</td>
</tr>
</tbody>
</table>

Univariate TF
- (Tibshirani, 2014)
- (Mammen, Van De Geer, 2001)

Special: locally adaptivity comes with a statistical cost
- (Sadhanala, W., Tibshirani, 2016)
- (Sadhanala, W., Tibshirani, 2017)
Part III sequential learning
Data analysis is conditional/adaptive

• “All inferences are conditional inferences.”
 – Jonathan Taylor (via Ryan)

• “Why most published research findings are false?”
 – John Ioannidis, 2005

• “A garden of forking paths”
 – Gelman and Loken, 2013
Related work

• ADA via Differential privacy (DFHPRR15, BNSSSU15, etc...)
 – Similar setting. DP is unnecessarily strong for the purpose. Need low-sensitivity.
 – We work with conditional expectations directly.

• Lower bounds via finger printing codes (Hardt, Ullman, Steinke, etc)
 – Uniform prior => discrete distribution of atoms (fingerprinting coe).
 – Reconstruction attack of iid data

• Bayesian Adaptive Data Analysis (Elder, 2017)
 – The player and adversary share the same prior. Information symmetry.

• Post-selection inference (Taylor, Tibshirani, Fithian, Lee, etc.)
 – The focus is to have correct confidence interval, despite selection bias.
 – We prevent finding significantly biased statistics in the first place.
Gaussian adaptive data analysis

\[\phi_T \sim N(\mu_T, \Sigma) \]

Player
I have the data but not the distribution.
I choose how to answer the questions.

Adversary
I have the distribution.
I choose questions \(T \).

Example: Unit projection of multivariate Gaussian.

- \(X \sim \mathcal{N}(\mu, \sigma^2 I_d) \)
- \(\mathcal{T} = \{ t \in \mathbb{R}^d : \| t \|_2 \leq 1 \} \) is the class of all unit vectors
- \(\phi_t(X) = \langle t, X \rangle \).
- For any \(t \in \mathcal{T} \), \(\text{Var}(\phi_t(X)) \leq \frac{\sigma^2}{n} \).

Example: Bayesian optimization for hyperparameter tuning.

- \(X \) validation set.
- \(\mathcal{T} = [0, 1]^d \), \(d \)-dimensional hyperparameter.
- \(\phi_t(X) \): Validation error of the fitted model with hyperparameter \(t \).
- \(\phi_T \) is assumed to be a Gaussian process.
Main results: a minimax lower bound

Theorem 1 (Unknown distribution) Assume $|\mathcal{T}| > k - 1 + 2^{k-1}$ and \mathcal{D} can induce distribution $\phi_T \sim \mathcal{N}(\mu, \Sigma)$ for any μ, Σ satisfying $\Sigma_{i,i} \leq \sigma^2$. Then

$$\inf_{A_{1:k}} \sup_{\mathcal{D}(\phi_T)} \sup_{T_{1:k}} \left(\max_i \mathbb{E}[(A_i - \mu_{T_i})^2] \right) = \Omega(\sqrt{k} \sigma^2)$$

- Plug-in estimators: $k\sigma^2$
- Independent noise adding: $\sqrt{k} \sigma^2$

Our result says: “Independent noise adding is rate-optimal.”
Per-instance lower bound

Theorem 2 (Fixed distribution) For any fixed pair of \((D, T)\) that obeys the same joint Gaussian assumption, and in addition are sufficiently rich. Then

\[
\inf_{\text{Natural } A_{1:k}} \sup_{T_{1:k}} \left(\max_i \mathbb{E}[(A_i - \mu_{T_i})^2] \right) = \Omega(\sqrt{k}\sigma^2).
\]

- The same lower bound holds for each data distribution separately.
- If we restrict the class of player strategies somewhat.
- The hardness is dense within the class!
A note on the lower bound construction

• Approximately least-favorable Prior:
 – Uniform or Gaussian prior on the mean.
 – Some structured correlations

• Adversary strategy:
 – Explore first, then exploit.
 – Sign inference attack.

• Player strategy:
 – Posterior mean is optimal for square loss.
 – Optimal noise for obfuscating sign inference attack.
Summary Part III: still a long way to go

• Lower bound does not handle iid data

• In Gaussian projection:
 – Upper bound is meaningful up to $k = d^2$.
 – Lower bound is tight only up to $k = d$.

• Beyond joint Gaussian models.
Conclusion

- Data/Privacy challenge:
 - Differentially private machine learning
 - Slowly transforming DP into a practical technology

- Modeling challenge:
 - locally adaptive function classes
 - And their minimax estimation error

- Sequential learning:
 - Some progress with a reasonably strong lowerbound
 - But a lot more problems to solve than solved
Future work

• Further pursue pDP. Build practical DP tools into:
 – my open source project: pyDiffPriv

• Investigating nonparametric postprocessing for DP-releases, and private nonparametric regression

• Sequential/Online Trend filtering

• Sequential estimation beyond joint Gaussian observations
Supplementary slides
Details on the direct analysis of OPS

Theorem 15 (The adaptivity of OPS in Linear/Ridge Regression). Consider the algorithm that samples from

\[p(\theta|X, y) \propto e^{-\frac{\gamma}{2}(\|y-x\theta\|^2 + \lambda\|\theta\|^2)}. \]

Let \(\hat{\theta} \) and \(\hat{\theta}' \) be the ridge regression estimate with data set \(X \times y \) and \([X, x] \times [y, y]\) and defined the out of sample leverage score \(\mu := x^T(X^TX + \lambda I)^{-1}x = x^TH^{-1}x \) and in-sample leverage score \(\mu' := (X')^TX' + \lambda I)^{-1}x = (H')^{-1}x \). Then for every \(\delta > 0 \), privacy target \((x, y)\), the algorithm is \((\epsilon, \delta)\)-pDP with

\[
\epsilon(Z, z) \leq \frac{1}{2} \left| -\log(1 + \mu) + \frac{\gamma\mu}{(1 + \mu)}(y - x^T\hat{\theta})^2 \right| + \frac{\mu}{2} \log(2/\delta) + \sqrt{\gamma\mu \log(2/\delta)}|y - x^T\hat{\theta}|
\]

\[
= \frac{1}{2} \left| -\log(1 - \mu') - \frac{\gamma\mu'}{(1 - \mu')}(y - x^T\hat{\theta}')^2 \right| + \frac{\mu'}{2} \log(2/\delta) + \sqrt{\gamma\mu' \log(2/\delta)}|y - x^T\hat{\theta}'|.
\]
Information-theoretic lower bound

• Due to [Bassily et. al., 14]
 – Lipschitz
 – Lipschitz and Strongly convex

\[\frac{\sqrt{d}}{\epsilon} \]
\[\frac{d}{(\epsilon^2 \lambda_{\text{min}})} \]

• We match both

\[
F(\tilde{\theta}) - F(\theta^*) \leq \frac{d \log(d/\delta) \log(2/\delta)}{\left[\lambda + \lambda_{\text{min}}(X^TX)\right] \epsilon^2} + \lambda \|\theta^*\|_2^2
\]

In fact, we only need local Lipschitz.
Variants of differential privacy

<table>
<thead>
<tr>
<th></th>
<th>Data set</th>
<th>private target</th>
<th>probability metric</th>
<th>parametrized by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure-DP[12]</td>
<td>sup(_Z)</td>
<td>sup(_z)</td>
<td>(D_\infty(P|Q))</td>
<td>(A) only</td>
</tr>
<tr>
<td>Approx-DP[10]</td>
<td>sup(_Z)</td>
<td>sup(_z)</td>
<td>(D^\delta_\infty(P|Q))</td>
<td>(A) only</td>
</tr>
<tr>
<td>(z/m)-CDP[14, 5]</td>
<td>sup(_Z)</td>
<td>sup(_z)</td>
<td>(D_{\text{subG}}(P|Q))</td>
<td>(A) only</td>
</tr>
<tr>
<td>Rényi-DP[25]</td>
<td>sup(_Z)</td>
<td>sup(_z)</td>
<td>(D_{\alpha}(P|Q))</td>
<td>(A) only</td>
</tr>
<tr>
<td>Personal-DP[16, 21]</td>
<td>sup(_Z)</td>
<td>fixed (_z)</td>
<td>(D^\delta_\infty(P|Q))</td>
<td>(A) and (_z)</td>
</tr>
<tr>
<td>TV-privacy[2]</td>
<td>sup(_Z)</td>
<td>sup(_z)</td>
<td>(|P - Q|_{TV})</td>
<td>(A) only</td>
</tr>
<tr>
<td>KL-privacy[2]</td>
<td>sup(_Z)</td>
<td>sup(_z)</td>
<td>(D_{KL}(P|Q))</td>
<td>(A) only</td>
</tr>
<tr>
<td>On-Avg KL-privacy[33]</td>
<td>(\mathbb{E}_{Z \sim \mathcal{D}^n})</td>
<td>(\mathbb{E}_{z \sim \mathcal{D}})</td>
<td>(D_{KL}(P|Q))</td>
<td>(A) and (\mathcal{D})</td>
</tr>
<tr>
<td>Per-instance DP</td>
<td>fixed (_Z)</td>
<td>fixed (_z)</td>
<td>(D^\delta_\infty(P|Q))</td>
<td>(A, \ Z) and (_z)</td>
</tr>
</tbody>
</table>

Table 1: Comparing variances of differential privacy.
Example: New York City Taxi data
Data science for social good?

- Medical diagnosis
- Understanding how the brain works
- Better treatment
- Clean energy
- Epidemic forecast/prevention
- Fraud detection

Privacy law

Increasing privacy awareness
Interplay of Statistics and CS

Statistics

- Strong data assumptions.
- Exploit (assumed) structures to denoise.
- Harness uncertainty.

CS (esp. theory)

- Weak data assumptions.
- Play against very strong adversary.
- Active randomization.

Not satisfactory because assumptions often not true.

Also not satisfactory because Guarantees are too conservative.
Example of Graph Trend Filtering (WSST-15) on DP release of spatial statistics
Example of Ecological inference (used only county-Level aggregates)

(a) Exit poll results for women
(b) Ecological regression results for women

• **Input:** Vote proportions + US Census microdata.
• **Output:** Subpopulation prediction/inferences.